Theoretical models predict that
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract z ≳ 6 quasars are hosted in the most massive halos of the underlying dark matter distribution and thus would be immersed in protoclusters of galaxies. However, observations report inconclusive results. We investigate the 1.1 proper-Mpc2environment of thez = 7.54 luminous quasar ULAS J1342+0928. We search for Lyman-break galaxy (LBG) candidates using deep imaging from the Hubble Space Telescope (HST) in the Advanced Camera for Surveys (ACS)/F814W, Wide Field Camera 3 (WFC3)/F105W/F125W bands, and Spitzer/Infrared Array Camera at 3.6 and 4.5μ m. We report a LBG with magF125W= 26.41 at 223 projected proper kpc (pkpc) from the quasar. We find no HST counterpart to one [Cii ] emitter previously found with the Atacama Large millimeter/submillimeter Array (ALMA) at 27 projected pkpc andz [C II]=7.5341 ± 0.0009 (Venemans et al. 2020). We estimate the completeness of our LBG candidates using results from Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey/GOODS deep blank field searches sharing a similar filter setup. We find that >50% of thez ∼ 7.5 Lyman-break galaxies (LBGs) with magF125W> 25.5 are missed due to the absence of a filter redward of the Lyman break in F105W, hindering the UV color accuracy of the candidates. We conduct a QSO-LBG clustering analysis revealing a low LBG excess of in this quasar field, consistent with an average or low-density field. Consequently, this result does not present strong evidence of an LBG overdensity around ULAS J1342+0928. Furthermore, we identify two LBG candidates with az photmatching a confirmedz = 6.84 absorber along the line of sight to the quasar. All these galaxy candidates are excellent targets for follow-up observations with JWST and/or ALMA to confirm their redshift and physical properties.Free, publicly-accessible full text available May 1, 2025 -
Abstract We present the construction of a deep multiwavelength point-spread-function-matched photometric catalog in the Ultra-Deep Survey (UDS) field following the final UKIDSS UDS release. The catalog includes photometry in 24 filters, from the MegaCam-
uS 0.38μ m band to the Spitzer-IRAC 8μ m band, over ∼0.9 deg2and with a 5σ depth of 25.3 AB in theK -band detection image. The catalog, containing ≈188,564 (136,235) galaxies at 0.2 <z < 8.0 with stellar mass andK -band total magnitudeK < 25.2 (24.3) AB, enables a range of extragalactic studies. We also provide photometric redshifts, corresponding redshift probability distributions, and rest-frame absolute magnitudes and colors derived using the template-fitting codeeazy-py . Photometric redshift errors are less than 3%−4% atz < 4 across the full brightness range in theK band and stellar mass range . Stellar population properties (e.g., stellar mass, star formation rate, dust extinction) are derived from the modeling of the spectral energy distributions using the codesFAST and Dense Basis. -
ABSTRACT Over the past year, JWST has uncovered galaxies at record-breaking distances up to z ∼ 13. The JWST UNCOVER (ultra-deep NIRSpec and NIRcam observations before the epoch of reionization) program has obtained ultra-deep multiwavelength NIRCam imaging of the massive galaxy cluster A2744 over ∼45 arcmin2 down to ∼29.5 AB mag. Here, we present a robust ultraviolet (UV) luminosity function derived through lensing clusters at 9 < z < 12. Using comprehensive end-to-end simulations, we account for all lensing effects and systematic uncertainties in deriving both the amplification factors and the effective survey volume. Our results confirm the intriguing excess of UV-bright galaxies (MUV <−20 AB mag) previously reported at z > 9 in recent JWST studies. In particular, a double power-law (DPL) describes better the bright end of the luminosity function compared to the classical Schechter form. The number density of these bright galaxies is 10–100 times larger than theoretical predictions and previous findings based on Hubble Space Telescope (HST) observations. Additionally, we measure a star formation rate density of ρSFR = 10−2.64 M⊙ yr−1 Mpc−3 at these redshifts, which is 4–10 times higher than galaxy formation models that assume a constant star formation efficiency. Future wide-area surveys and accurate modelling of lensing-assisted observations will reliably constrain both the bright and the dim end of the UV luminosity function at z > 9, which will provide key benchmarks for galaxy formation models.
-
Abstract We present the first results from Chemical Evolution Constrained Using Ionized Lines in Interstellar Aurorae (CECILIA), a Cycle 1 JWST NIRSpec/MSA program that uses ultra-deep ∼30 hr G235M/F170LP observations to target multiple electron temperature-sensitive auroral lines in the spectra of 33 galaxies at
z ∼ 1–3. Using a subset of 23 galaxies, we construct two ∼600 object-hour composite spectra, both with and without the stellar continuum, and use these to investigate the characteristic rest-optical (λ rest≈ 5700–8500 Å) spectrum of star-forming galaxies at the peak epoch of cosmic star formation. Emission lines of eight different elements (H, He, N, O, Si, S, Ar, and Ni) are detected, with most of these features observed to be ≲3% the strength of Hα . We report the characteristic strength of three auroral features ([Nii ]λ 5756, [Siii ]λ 6313, and [Oii ]λ λ 7322, 7332), as well as other semi-strong and faint emission lines, including forbidden [Niii ]λ λ 7380, 7414 and permitted Oi λ 8449, some of which have never before been observed outside of the local Universe. Using these measurements, we findT e [Nii ] = 13,630 ± 2540 K, representing the first measurement of electron temperature using [Nii ] in the high-redshift Universe. We also see evidence for broad line emission with a FWHM of km s−1; the broad component of Hα is 6.01%–28.31% the strength of the narrow component and likely arises from star-formation-driven outflows. Finally, we briefly comment on the feasibility of obtaining large samples of faint emission lines using JWST in the future. -
ABSTRACT We report the detection of cold dust in an apparently quiescent massive galaxy (log (M⋆/M⊙) ≈ 11) at z ∼ 2 (G4). The source is identified as a serendipitous 2 mm continuum source in a deep ALMA observation within the field of Q2343-BX610, a z = 2.21 massive star-forming disc galaxy. Available multiband photometry of G4 suggests redshift of z ∼ 2 and a low specific star formation rate (sSFR), log (SFR/M⋆)[yr−1] ≈ −10.2, corresponding to ≈1.2 dex below the z = 2 main sequence (MS). G4 appears to be a peculiar dust-rich quiescent galaxy for its stellar mass (log (Mdust/M⋆) = −2.71 ± 0.26), with its estimated mass-weighted age (∼1–2 Gyr). We compile z ≳ 1 quiescent galaxies in the literature and discuss their age–ΔMS and log (Mdust/M⋆)–age relations to investigate passive evolution and dust depletion scale. A long dust depletion time and its morphology suggest morphological quenching along with less efficient feedback that could have acted on G4. The estimated dust yield for G4 further supports this idea, requiring efficient survival of dust and/or grain growth, and rejuvenation (or additional accretion). Follow-up observations probing the stellar light and cold dust peak are necessary to understand the implication of these findings in the broader context of galaxy evolutionary studies and quenching in the early universe.
-
Abstract The selection of high-redshift galaxies often involves spectral energy distribution (SED) fitting to photometric data, an expectation for contamination levels, and measurement of sample completeness—all vetted through comparison to spectroscopic redshift measurements of a sub-sample. The first JWST data are now being taken over several extragalactic fields to different depths and across various areas, which will be ideal for the discovery and classification of galaxies out to distances previously uncharted. As spectroscopic redshift measurements for sources in this epoch will not be initially available to compare with the first photometric measurements of
z > 8 galaxies, robust photometric redshifts are of the utmost importance. Galaxies atz > 8 are expected to have bluer rest-frame ultraviolet (UV) colors than typically used model SED templates, which could lead to catastrophic photometric redshift failures. We use a combination of BPASS andCloudy models to create a supporting set of templates that match the predicted rest-UV colors ofz > 8 simulated galaxies. We test these new templates by fitting simulated galaxies in a mock catalog, Yung et al., which mimic expected field depths and areas of the JWST Cosmic Evolution Early Release Science Survey (m 5σ ∼ 28.6 over ∼100 arcmin2). We use EAZY to highlight the improvements in redshift recovery with the inclusion of our new template set and suggest criteria for selecting galaxies at 8 <z < 10 with the JWST, providing an important test case for observers venturing into this new era of astronomy. -
ABSTRACT We present the results of a search for high-redshift (z > 9) galaxy candidates in the JWST UNCOVER survey, using deep NIRCam and NIRISS imaging in seven bands over ∼45 arcmin2 and ancillary Hubble Space Telescope (HST) observations. The NIRCam observations reach a 5σ limiting magnitude of ∼29.2 AB. The identification of high-z candidates relies on a combination of a dropout selection and photometric redshifts. We find 16 candidates at 9 < z < 12 and three candidates at 12 < z < 13, eight candidates are deemed very robust. Their lensing amplification ranges from μ = 1.2 to 11.5. Candidates have a wide range of (lensing corrected) luminosities and young ages, with low stellar masses [6.8 < log(M⋆/M⊙) < 9.5] and low star formation rates (SFR = 0.2–7 M⊙ yr−1), confirming previous findings in early JWST observations of z > 9. A few galaxies at z ∼ 9−10 appear to show a clear Balmer break between the F356W and F444W/F410M bands, which helps constrain their stellar mass. We estimate blue UV continuum slopes between β = −1.8 and −2.3, typical for early galaxies at z > 9 but not as extreme as the bluest recently discovered sources. We also find evidence for a rapid redshift-evolution of the mass-luminosity relation and a redshift evolution of the UV continuum slope for a given range of intrinsic magnitude, in line with theoretical predictions. These findings suggest that deeper JWST observations are needed to reach the fainter galaxy population at those early epochs, and follow-up spectroscopy will help better constrain the physical properties and star formation histories of a larger sample of galaxies.
-
Smith, Keith (Ed.)Ultraviolet light from early galaxies is thought to have ionized gas in the intergalactic medium. However, there are few observational constraints on this epoch because of the faintness of those galaxies and the redshift of their optical light into the infrared. We report the observation, in JWST imaging, of a distant galaxy that is magnified by gravitational lensing. JWST spectroscopy of the galaxy, at rest-frame optical wavelengths, detects strong nebular emission lines that are attributable to oxygen and hydrogen. The measured redshift is z= 9.51 ± 0.01, corresponding to 510 million years after the Big Bang. The galaxy has a radius of 16.2-7.2+4.6 parsecs, which is substantially more compact than galaxies with equivalent luminosity at z~ 6 to 8, leading to a high star formation rate surface density.more » « less
-
Abstract The James Webb Space Telescope is revealing a new population of dust-reddened broad-line active galactic nuclei (AGN) at redshifts
z ≳ 5. Here we present deep NIRSpec/Prism spectroscopy from the Cycle 1 Treasury program Ultradeep NIRSpec and NIRCam ObserVations before the Epoch of Reionization (UNCOVER) of 15 AGN candidates selected to be compact, with red continua in the rest-frame optical but with blue slopes in the UV. From NIRCam photometry alone, they could have been dominated by dusty star formation or an AGN. Here we show that the majority of the compact red sources in UNCOVER are dust-reddened AGN: 60% show definitive evidence for broad-line Hα with a FWHM > 2000 km s−1, 20% of the current data are inconclusive, and 20% are brown dwarf stars. We propose an updated photometric criterion to select redz > 5 AGN that excludes brown dwarfs and is expected to yield >80% AGN. Remarkably, among allz phot> 5 galaxies with F277W – F444W > 1 in UNCOVER at least 33% are AGN regardless of compactness, climbing to at least 80% AGN for sources with F277W – F444W > 1.6. The confirmed AGN have black hole masses of 107–109M ⊙. While their UV luminosities (−16 >M UV> −20 AB mag) are low compared to UV-selected AGN at these epochs, consistent with percent-level scattered AGN light or low levels of unobscured star formation, the inferred bolometric luminosities are typical of 107–109M ⊙black holes radiating at ∼10%–40% the Eddington limit. The number densities are surprisingly high at ∼10−5Mpc−3mag−1, 100 times more common than the faintest UV-selected quasars, while accounting for ∼1% of the UV-selected galaxies. While their UV faintness suggests they may not contribute strongly to reionization, their ubiquity poses challenges to models of black hole growth. -
ABSTRACT We present a detailed study of a galaxy merger taking place at z = 1.89 in the GOODS-S field. Here, we analyse Keck/MOSFIRE spectroscopic observations from the MOSFIRE Deep Evolution Field (MOSDEF) survey along with multiwavelength photometry assembled by the 3D-HST survey. The combined data set is modelled to infer the past star formation histories (SFHs) of both merging galaxies. They are found to be massive, with log10(M*/M⊙) > 11, with a close mass ratio satisfying the typical major-merger definition. Additionally, in the context of delayed-τ models, GOODS-S 43114, and GOODS-S 43683 have similar SFHs and low star formation rates (log10(SFR(SED)/${\rm M}_{\odot }\,\rm {yr}^{-1}$) < 1.0) compared to their past averages. The best-fitting model SEDs show elevated H δA values for both galaxies, indicating that their stellar spectra are dominated by A-type stars, and that star formation peaked ∼0.5−1 Gyr ago and has recently declined. Additionally, based on SED fitting both merging galaxies turned on and shut off star formation within a few hundred Myr of each other, suggesting that their bursts of star formation may be linked. Combining the SFHs and H δA results with recent galaxy merger simulations, we infer that these galaxies have recently completed their first pericentric passage and are moving apart. Finally, the relatively low second velocity moment of GOODS-S 43114, given its stellar mass suggests a disc-like structure. However, including the geometry of the galaxy in the modelling does not completely resolve the discrepancy between the dynamical and stellar masses. Future work is needed to resolve this inconsistency in mass.