skip to main content

Search for: All records

Creators/Authors contains: "Brandt, Peter"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Biological nitrogen fixation is a key process balancing the loss of combined nitrogen in the marine nitrogen cycle. Its relevance in upwelling or high nutrient regions is still unclear, with the few available studies in these regions of the ocean reporting rates that vary widely from below detection limit to > 100 nmol N L−1 d−1. In the eastern tropical Atlantic Ocean, two open ocean upwelling systems are active in boreal summer. One is the seasonal equatorial upwelling, where the residual phosphorus associated with aged upwelled waters is suggested to enhance nitrogen fixation in this season. The other is the Guinea Dome, a thermal upwelling dome. We conducted two surveys along 23° W across the Guinea Dome and the Equator from 15° N to 5° S in September 2015 and August–September 2016 with high latitudinal resolution (20–60 nm between stations). The abundance ofTrichodesmiumcolonies was characterized by an Underwater Vision Profiler 5 and the total biological nitrogen fixation in the euphotic layer was measured using the15N2technique. The highest abundances ofTrichodesmiumcolonies were found in the area of the Guinea Dome (9°–15° N) with a maximum of 3 colonies L−1near the surface. By contrast, colonies were almost absent in the Equatorial band between 2° N and 5° S. The highest nitrogen fixation rate was measured at the northern edge of the Guinea Dome in 2016 (ca. 31 nmol N L−1 d−1). In this region, where diazotrophs thrived on a sufficient supply of both phosphorus and iron, a patchy distribution was unveiled by our increased spatial resolution scheme. In the Equatorial band, rates were considerably lower, ranging from below detection limit to ca. 4 nmol N L−1 d−1, with a clear difference in magnitude between 2015 (rates close to zero) and 2016 (average rates around 2 nmol N L−1 d−1). This difference seemed triggered by a contrasting supply of phosphorus between years. Our study stresses the importance of surveys with sampling at fine-scale spatial resolution, and shows unexpected high variability in the rates of nitrogen fixation in the Guinea Dome, a region where diazotrophy is a significant process supplying new nitrogen into the euphotic layer.

    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. In the Equatorial Atlantic nitrogen availability is assumed to control phytoplankton dynamics. However, in situ measurements of phytoplankton physiology and productivity are surprisingly sparse in comparison with the North Atlantic. In addition to the formation of the Equatorial cold tongue in the boreal summer, tropical instability waves (TIWs) and related short-term processes may locally cause episodic events of enhanced nutrient supply to the euphotic layer. Here, we assess changes in phytoplankton photophysiology in response to such episodic events as well as short-term nutrient addition experiments using a pair of custom-built fluorometers that measure chlorophyll a (Chl a ) variable fluorescence and fluorescence lifetimes. The fluorometers were deployed during a transatlantic cruise along the Equator in the fall of 2019. We hypothesized that the Equatorial Atlantic is nitrogen-limited, with an increasing degree of limitation to the west where the cold tongue is not prominent, and that infrequent nitrate injection by TIW related processes are the primary source alleviating this limitation. We further hypothesized phytoplankton are well acclimated to the low levels of nitrogen, and once nitrogen is supplied, they can rapidly utilize it to stimulate growth and productivity. Across three TIW events encountered, we observed increased productivity and chlorophyll a concentration concurrent with a decreased photochemical conversion efficiency and overall photophysiological competency. Moreover, the observed decrease in photosynthetic turnover rates toward the western section suggested a 70% decrease in growth rates compared to their maximum values under nutrient-replete conditions. This decrease aligned with the increased growth rates observed following 24 h incubation with added nitrate in the western section. These results support our hypotheses that nitrogen is the limiting factor in the region and that phytoplankton are in a state of balanced growth, waiting to “body surf” waves of nutrients which fuel growth and productivity. 
    more » « less
  3. Abstract

    Several years of moored turbulence measurements fromχpods at three sites in the equatorial cold tongues of Atlantic and Pacific Oceans yield new insights into proxy estimates of turbulence that specifically target the cold tongues. They also reveal previously unknown wind dependencies of diurnally varying turbulence in the near-critical stratified shear layers beneath the mixed layer and above the core of the Equatorial Undercurrent that we have come to understand as deep cycle (DC) turbulence. Isolated by the mixed layer above, the DC layer is only indirectly linked to surface forcing. Yet, it varies diurnally in concert with daily changes in heating/cooling. Diurnal composites computed from 10-min averaged data at fixedχpod depths show that transitions from daytime to nighttime mixing regimes are increasingly delayed with weakening wind stressτ. These transitions are also delayed with respect to depth such that they follow a descent rate of roughly 6 m h−1, independent ofτ. We hypothesize that this wind-dependent delay is a direct result of wind-dependent diurnal warm layer deepening, which acts as the trigger to DC layer instability by bringing shear from the surface downward but at rates much slower than 6 m h−1. This delay in initiation of DC layer instability contributes to a reduction in daily averaged values of turbulence dissipation. Both the absence of descending turbulence in the sheared DC layer prior to arrival of the diurnal warm layer shear and the magnitude of the subsequent descent rate after arrival are roughly predicted by laboratory experiments on entrainment in stratified shear flows.

    Significance Statement

    Only recently have long time series measurements of ocean turbulence been available anywhere. Important sites for these measurements are the equatorial cold tongues where the nature of upper-ocean turbulence differs from that in most of the world’s oceans and where heat uptake from the atmosphere is concentrated. Critical to heat transported downward from the mixed layer is the diurnally varying deep cycle of turbulence below the mixed layer and above the core of the Equatorial Undercurrent. Even though this layer does not directly contact the surface, here we show the influence of the surface winds on both the magnitude of the deep cycle turbulence and the timing of its descent into the depths below.

    more » « less
  4. Abstract

    Based on velocity data from a long‐term moored observatory located at 0°N, 23°W we present evidence of a vertical asymmetry during the intraseasonal maxima of northward and southward upper‐ocean flow in the equatorial Atlantic Ocean. Periods of northward flow are characterized by a meridional velocity maximum close to the surface, while southward phases show a subsurface velocity maximum at about 40 m. We show that the observed asymmetry is caused by the local winds. Southerly wind stress at the equator drives northward flow near the surface and southward flow below that is superimposed on the Tropical Instability Wave (TIW) velocity field. This wind‐driven overturning cell, known as the Equatorial Roll, shows a distinct seasonal cycle linked to the seasonality of the meridional component of the south‐easterly trade winds. The superposition of vertical shear of the Equatorial Roll and TIWs causes asymmetric mixing during northward and southward TIW phases.

    more » « less
  5. Abstract. Marine particles of different nature are found throughout the globalocean. The term “marine particles” describes detritus aggregates andfecal pellets as well as bacterioplankton, phytoplankton, zooplankton andnekton. Here, we present a global particle size distribution datasetobtained with several Underwater Vision Profiler 5 (UVP5) camerasystems. Overall, within the 64 µm to about 50 mm size range coveredby the UVP5, detrital particles are the most abundant component of allmarine particles; thus, measurements of theparticle size distribution with the UVP5 can yield importantinformation on detrital particle dynamics. During deployment, which ispossible down to 6000 m depth, the UVP5 images a volume of about 1 Lat a frequency of 6 to 20 Hz. Each image is segmented in real time, andsize measurements of particles are automatically stored. All UVP5units used to generate the dataset presented here wereinter-calibrated using a UVP5 high-definition unit as reference. Ourconsistent particle size distribution dataset contains 8805 verticalprofiles collected between 19 June 2008 and 23 November 2020. All major ocean basins, as well as the Mediterranean Sea and the Baltic Sea, were sampled. A total of 19 % of all profiles had a maximum sampling depth shallower than 200 dbar, 38 % sampled at least the upper 1000 dbar depth range and 11 % went down to at least 3000 dbar depth. First analysis of the particle size distribution dataset shows that particle abundance is found to be high at high latitudes and in coastal areas where surface productivity or continental inputs are elevated. The lowest values are found in the deep ocean and in the oceanic gyres. Our dataset should be valuable for more in-depth studies that focus on the analysis of regional, temporal and global patterns of particle size distribution and flux as well as for the development and adjustment of regional and global biogeochemical models. The marine particle size distribution dataset (Kiko et al., 2021) is available at 
    more » « less
  6. Abstract

    Multiyear turbulence measurements from oceanographic moorings in equatorial Atlantic and Pacific cold tongues reveal similarities in deep cycle turbulence (DCT) beneath the mixed layer (ML) and above the Equatorial Undercurrent (EUC) core. Diurnal composites of turbulence kinetic energy dissipation rate,ϵ, clearly show the diurnal cycles of turbulence beneath the ML in both cold tongues. Despite differences in surface forcing, EUC strength and core depth DCT occurs, and is consistent in amplitude and timing, at all three sites. Time‐mean values ofϵat 30 m depth are nearly identical at all three sites. Variations of averaged values ofϵin the deep cycle layer below 30 m range to a factor of 10 between sites. A proposed scaling in depth that isolates the deep cycle layers and ofϵby the product of wind stress and current shear collapses vertical profiles at all sites to within a factor of 2.

    more » « less
  7. null (Ed.)