skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Brinkerhoff, Craig"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Inland waters emit significant amounts of carbon dioxide (CO2) to the atmosphere; however, the global magnitude and source distribution of inland water CO2emissions remain uncertain. These fluxes have previously been “statistically upscaled” by independently estimating dissolved CO2concentrations and gas exchange velocities to calculate fluxes. This scaling, while robust and defensible, has known limitations in representing carbon source limitations and spatial variability. Here, we develop and calibrate a CO2transport model for the continental United States, simulating carbon transport and transformation in >22 million hydraulically connected rivers, lakes, and reservoirs. We estimate 25% lower CO2fluxes compared to upscaling estimates forced by the same observational calibration data. While precise CO2source distribution estimates are limited by the resolution of model parameterizations, our model suggests that stream corridor CO2production dominates over groundwater inputs at the continental scale. Our results further suggest that the lack of observational networks for groundwater CO2and scalable metabolic models of aquatic CO2production remain the most salient barriers to further coupling of our model with other Earth system components. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. The magnitude of stream and river carbon dioxide (CO 2 ) emission is affected by seasonal changes in watershed biogeochemistry and hydrology. Global estimates of this flux are, however, uncertain, relying on calculated values for CO 2 and lacking spatial accuracy or seasonal variations critical for understanding macroecosystem controls of the flux. Here, we compiled 5,910 direct measurements of fluvial CO 2 partial pressure and modeled them against watershed properties to resolve reach-scale monthly variations of the flux. The direct measurements were then combined with seasonally resolved gas transfer velocity and river surface area estimates from a recent global hydrography dataset to constrain the flux at the monthly scale. Globally, fluvial CO 2 emission varies between 112 and 209 Tg of carbon per month. The monthly flux varies much more in Arctic and northern temperate rivers than in tropical and southern temperate rivers (coefficient of variation: 46 to 95 vs. 6 to 12%). Annual fluvial CO 2 emission to terrestrial gross primary production (GPP) ratio is highly variable across regions, ranging from negligible (<0.2%) to 18%. Nonlinear regressions suggest a saturating increase in GPP and a nonsaturating, steeper increase in fluvial CO 2 emission with discharge across regions, which leads to higher percentages of GPP being shunted into rivers for evasion in wetter regions. This highlights the importance of hydrology, in particular water throughput, in routing terrestrial carbon to the atmosphere via the global drainage networks. Our results suggest the need to account for the differential hydrological responses of terrestrial–atmospheric vs. fluvial–atmospheric carbon exchanges in plumbing the terrestrial carbon budget. 
    more » « less
  3. Abstract The Surface Water and Ocean Topography (SWOT) satellite has the potential to transform global hydrologic science by offering simultaneous and synoptic estimates of river discharge and other hydraulic variables. Discharge is estimated from SWOT observations of water surface elevation, width, and slope. A first assessment using just the highest quality SWOT measurements, over the first 15 months (March 2023–July 2024) of the mission evaluated at 65 gauged reaches shows results consistent with pre‐launch expectations. SWOT estimates track discharge dynamics without relying on any gauge information: median correlation is 0.73, with a correlation interquartile range of 0.51–0.89. SWOT estimates capture discharge magnitude correctly in some cases but are biased (median bias is 50%) in others. There are already a total of 11,274 ungauged global locations with highest quality SWOT measurements where SWOT discharge is expected to accurately track discharge variations: this value will increase as SWOT data record length grows, algorithms are refined and SWOT measurements are reprocessed. This first look indicates that SWOT discharge is performing as expected for SWOT data that achieve performance requirements, providing observed information on discharge variations in ungauged basins globally. 
    more » « less
    Free, publicly-accessible full text available May 16, 2026
  4. Abstract The relative capacity for watersheds to eliminate or export reactive constituents has important implications on aquatic ecosystem ecology and biogeochemistry. Removal efficiency depends on factors that affect either the reactivity or advection of a constituent within river networks. Here, we characterized Damköhler number (Da) for dissolved organic carbon (DOC) uptake in global river networks. Da equals the advection to reaction timescale ratio and thus provides a unitless indicator for DOC reaction intensity during transport within river networks. We aim to demonstrate the spatial and temporal patterns and interplays among factors that determine DOC uptake across global river networks. We show that watershed size imposes a primary control on river network DOC uptake due to a three orders of magnitude difference in water residence time (WRT) between the smallest and largest river networks. DOC uptake capacity in tropical river networks is 2–6 times that in temperate and the Arctic river networks, coinciding with larger DOC removals in warm than in cold watersheds. River damming has a profound impact on DOC uptake due to significantly extended WRTs, particularly in temperate watersheds where most constructed dams are situated. Global warming is projected to increase river network DOC uptake by ca. 19% until year 2100 under the RCP4.5 scenario. 
    more » « less
  5. Abstract Sunlight can oxidize dissolved organic carbon (DOC) to dissolved inorganic carbon (DIC) in freshwaters. The importance of complete photooxidation, or photomineralization, as a sink for DOC remains unclear in temperate rivers, as most estimates are restricted to lakes, high latitude rivers, and coastal river plumes. In this study, we construct a model representing over 75,000 river reaches in the Connecticut River Watershed (CRW), USA, to calculate spectrally resolved photomineralization. We test the hypothesis that photomineralization is a negligible DOC sink across all reaches and flow conditions relative to DOC fluxes. Our model quantifies reaction rates and transport drivers within the river reaches for the ranges of flow conditions, incoming solar irradiance, and canopy cover shading observed throughout the year. Our model predicts average daily areal photomineralization rates ranging from 1.16 mg‐C m−2 day−1in low flow river reaches in the winter, to 18.33 mg‐C m−2 day−1in high flow river reaches during the summer. Even for high photomineralization fluxes, corresponding photomineralization uptake velocities are typically at least an order of magnitude smaller than those reported for other instream processes. We calculate DOC elimination by photomineralization relative to DOC fluxes through individual stream reaches as well as the entire riverine portion of the CRW. We find that relative photomineralization fluxes are highest in summer drought conditions in low order streams. In median flows and mean light intensities, for an average watershed travel distance, 3%–5% of the DOC fluxes are eliminated, indicating that photomineralization is a minor DOC sink in temperate rivers. 
    more » « less