Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract High-resolution spectroscopy of exoplanet atmospheres provides insights into their composition and dynamics from the resolved line shape and depth of thousands of spectral lines. WASP-127 b is an extremely inflated sub-Saturn (Rp= 1.311RJup,Mp= 0.16MJup) with previously reported detections of H2O and CO2. However, the seeming absence of the primary carbon reservoir expected at WASP-127 b temperatures (Teq∼1400 K) from chemical equilibrium, CO, posed a mystery. In this manuscript, we present the analysis of high-resolution observations of WASP-127 b with the Immersion Grating Infrared Spectrometer on Gemini South. We confirm the presence of H2O (8.67σ) and report the detection of CO (4.34σ). Additionally, we conduct a suite of Bayesian retrieval analyses covering a hierarchy of model complexity and self-consistency. When freely fitting for the molecular gas volume mixing ratios, we obtain super-solar metal enrichment for H2O abundance of log10X = −1.23 and a lower limit on the CO abundance of log10XCO≥–2.20 at 2σconfidence. We also report tentative evidence of photochemistry in WASP-127 b based upon the indicative depletion of H2S. This is also supported by the data preferring models with photochemistry over free-chemistry and thermochemistry. The overall analysis implies a super-solar (∼39× Solar; [M/H] = ) metallicity for the atmosphere of WASP-127 b and an upper limit on its atmospheric C/O ratio as < 0.68.more » « less
- 
            Abstract A primary goal of exoplanet science is to measure the atmospheric composition of gas giants in order to infer their formation and migration histories. Common diagnostics for planet formation are the atmospheric metallicity ([M/H]) and the carbon-to-oxygen (C/O) ratio as measured through transit or emission spectroscopy. The C/O ratio in particular can be used to approximately place a planet’s initial formation radius from the stellar host, but a given C/O ratio may not be unique to formation location. This degeneracy can be broken by combining measurements of both the C/O ratio and the atmospheric refractory-to-volatile ratio. We report the measurement of both quantities for the atmosphere of the canonical ultrahot Jupiter WASP-121 b using the high-resolution (R= 45,000) IGRINS instrument on Gemini South. Probing the planet’s direct thermal emission in both pre- and post-secondary eclipse orbital phases, we infer that WASP-121 b has a significantly superstellar C/O ratio of and a moderately superstellar refractory-to-volatile ratio at stellar. This combination is most consistent with formation between the soot line and H2O snow line, but we cannot rule out formation between the H2O and CO snow lines or beyond the CO snow line. We also measure velocity offsets between H2O, CO, and OH, potentially an effect of chemical inhomogeneity on the planet dayside. This study highlights the ability to measure both C/O and refractory-to-volatile ratios via high-resolution spectroscopy in the near-IRHandKbands.more » « lessFree, publicly-accessible full text available December 1, 2025
- 
            Abstract Ultra-hot Jupiters (UHJs) are among the best targets for atmospheric characterization at high spectral resolution. Resolving their transmission spectra as a function of orbital phase offers a unique window into the 3D nature of these objects. In this work, we present three transits of the UHJ WASP-121b observed with Gemini-S/IGRINS. For the first time, we measure the phase-dependent absorption signals of CO and H2O in the atmosphere of an exoplanet, and we find that they are different. While the blueshift of CO increases during the transit, the absorption lines of H2O become less blueshifted with phase, and even show a redshift in the second half of the transit. These measurements reveal the distinct spatial distributions of both molecules across the atmospheres of UHJs. Also, we find that the H2O signal is absent in the first quarter of the transit, potentially hinting at cloud formation on the evening terminator of WASP-121b. To further interpret the absorption trails of CO and H2O, as well as the Doppler shifts of Fe previously measured with VLT/ESPRESSO, we compare the data to simulated transits of WASP-121b. To this end, we post-process the outputs of the global circulation models with a 3D Monte-Carlo radiative transfer code. Our analysis shows that the atmosphere of WASP-121b is subject to atmospheric drag, as previously suggested by small hotspot offsets inferred from phase-curve observations. Our study highlights the importance of phase-resolved spectroscopy in unravelling the complex atmospheric structure of UHJs and sets the stage for further investigations into their chemistry and dynamics.more » « less
- 
            Abstract Measurements of the carbon-to-oxygen (C/O) ratios of exoplanet atmospheres can reveal details about their formation and evolution. Recently, high-resolution cross-correlation analysis has emerged as a method of precisely constraining the C/O ratios of hot Jupiter atmospheres. We present two transits of the ultrahot Jupiter WASP-76b observed between 1.4 and 2.4μm with the high-resolution Immersion GRating INfrared Spectrometer on the Gemini-S telescope. We detected the presence of H2O, CO, and OH at signal-to-noise ratios of 6.93, 6.47, and 3.90, respectively. We performed two retrievals on this data set. A free retrieval for abundances of these three species retrieved a volatile metallicity of , consistent with the stellar value, and a supersolar carbon-to-oxygen ratio of C/O . We also ran a chemically self-consistent grid retrieval, which agreed with the free retrieval within 1σbut favored a slightly more substellar metallicity and solar C/O ratio ( and C/O ). A variety of formation pathways may explain the composition of WASP-76b. Additionally, we found systemic (Vsys) and Keplerian (Kp) velocity offsets which were broadly consistent with expectations from 3D general circulation models of WASP-76b, with the exception of a redshiftedVsysfor H2O. Future observations to measure the phase-dependent velocity offsets and limb differences at high resolution on WASP-76b will be necessary to understand the H2O velocity shift. Finally, we find that the population of exoplanets with precisely constrained C/O ratios generally trends toward super-solar C/O ratios. More results from high-resolution observations or JWST will serve to further elucidate any population-level trends.more » « less
- 
            Abstract Ground-based high-resolution and space-based low-resolution spectroscopy are the two main avenues through which transiting exoplanet atmospheres are studied. Both methods provide unique strengths and shortcomings, and combining the two can be a powerful probe into an exoplanet’s atmosphere. Within a joint atmospheric retrieval framework, we combined JWST NIRSpec/G395H secondary eclipse spectra and Gemini South/IGRINS pre- and post-eclipse thermal emission observations of the hot Jupiter WASP-77A b. Our inferences from the IGRINS and NIRSpec data sets are consistent with each other, and combining the two allows us to measure the gas abundances of H2O and CO, as well as the vertical thermal structure, with higher precision than either data set provided individually. We confirm WASP-77A b’s subsolar metallicity ([(C+O)/H] = −0.61 and solar C/O ratio (C/O = 0.57 . The two types of data are complementary, and our abundance inferences are mostly driven by the IGRINS data, while inference of the thermal structure is driven by the NIRSpec data. Our ability to draw inferences from the post-eclipse IGRINS data is highly sensitive to the number of singular values removed in the detrending process, potentially due to high and variable humidity. We also search for signatures for atmospheric dynamics in the IGRINS data and find that propagated ephemeris error can manifest as either an orbital eccentricity or a strong equatorial jet. Neither are detected when using more up-to-date ephemerides. However, we find moderate evidence of thermal inhomogeneity and measure a cooler nightside that presents itself in the later phases after secondary eclipse.more » « less
- 
            Abstract Close-in lava planets represent an extreme example of terrestrial worlds, but their high temperatures may allow us to probe a diversity of crustal compositions. The brightest and most well-studied of these objects is 55 Cancri e, a nearby super-Earth with a remarkably short 17 hr orbit. However, despite numerous studies, debate remains about the existence and composition of its atmosphere. We present upper limits on the atmospheric pressure of 55 Cnc e derived from high-resolution time-series spectra taken with Gemini-N/MAROON-X. Our results are consistent with current crustal evaporation models for this planet which predict a thin ∼100 mbar atmosphere. We conclude that, if a mineral atmosphere is present on 55 Cnc e, the atmospheric pressure is below 100 mbar.more » « less
- 
            Abstract PLATO (PLAnetary Transits and Oscillations of stars) is ESA’s M3 mission designed to detect and characterise extrasolar planets and perform asteroseismic monitoring of a large number of stars. PLATO will detect small planets (down to <2R$$_\textrm{Earth}$$ ) around bright stars (<11 mag), including terrestrial planets in the habitable zone of solar-like stars. With the complement of radial velocity observations from the ground, planets will be characterised for their radius, mass, and age with high accuracy (5%, 10%, 10% for an Earth-Sun combination respectively). PLATO will provide us with a large-scale catalogue of well-characterised small planets up to intermediate orbital periods, relevant for a meaningful comparison to planet formation theories and to better understand planet evolution. It will make possible comparative exoplanetology to place our Solar System planets in a broader context. In parallel, PLATO will study (host) stars using asteroseismology, allowing us to determine the stellar properties with high accuracy, substantially enhancing our knowledge of stellar structure and evolution. The payload instrument consists of 26 cameras with 12cm aperture each. For at least four years, the mission will perform high-precision photometric measurements. Here we review the science objectives, present PLATO‘s target samples and fields, provide an overview of expected core science performance as well as a description of the instrument and the mission profile towards the end of the serial production of the flight cameras. PLATO is scheduled for a launch date end 2026. This overview therefore provides a summary of the mission to the community in preparation of the upcoming operational phases.more » « lessFree, publicly-accessible full text available June 1, 2026
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
