skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Burls, Natalie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Characterized by similar-to-today CO2 (∼400 ppm) and surface temperatures approximately 3°–4°C warmer than the preindustrial, the mid-Pliocene warm period (mPWP) has often been used as an analog for modern CO2-driven climate change and as a constraint on the equilibrium climate sensitivity (ECS). However, model intercomparison studies suggest that non-CO2boundary conditions—such as changes in ice sheets—contribute substantially to the higher global mean temperatures and strongly shape the pattern of sea surface warming during the mPWP. Here, we employ a set of CESM2 simulations to quantify mPWP effective radiative forcings, study the role of ocean circulation changes in shaping the patterns of sea surface temperatures, and calculate radiative feedbacks during the mPWP. We find that the non-CO2boundary conditions of the mPWP, enhanced by changes in ocean circulation, contributed to larger high-latitude warming and less-stabilizing feedbacks relative to those induced by CO2alone. Accounting for differences in feedbacks between the mPWP and the modern (greenhouse gas–driven) climate provides stronger constraints on the high-end of modern-day ECS. However, a quantification of the forcing of non-CO2boundary condition changes combined with the distinct radiative feedbacks that they induce suggests that Earth system sensitivity may be higher than previously estimated. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  2. Abstract The Miocene (∼23–5 Ma) is a past warm epoch when global surface temperatures varied between ∼5 and 8°C warmer than today, and CO2concentration was ∼400–800 ppm. The narrowing/closing of the tropical ocean gateways and widening of high‐latitude gateways throughout the Miocene is likely responsible for the evolution of the ocean's overturning circulation to its modern structure, though the mechanisms remain unclear. Here, we investigate early and middle Miocene ocean circulation in an opportunistic climate model intercomparison (MioMIP1), using 14 simulations with different paleogeography, CO2, and vegetation. The strength of the Southern Ocean‐driven Meridional Overturning Circulation (SOMOC) bottom cell is similar in the Miocene and Pre‐Industrial (PI) but dominates the Miocene global MOC due to weaker Northern Hemisphere overturning. The Miocene Atlantic MOC (AMOC) is weaker than PI in all the simulations (by 2–21 Sv), possibly due to its connection with an Arctic that is considerably fresher than today. Deep overturning in the North Pacific (PMOC) is present in three simulations (∼5–10 Sv), of which two have a weaker AMOC, and one has a stronger AMOC (compared to its PMOC). Surface freshwater fluxes control northern overturning such that the basin with the least freshwater gain has stronger overturning. While the orography, which impacts runoff direction (Pacific vs. Atlantic), has an inconsistent impact on northern overturning across simulations, overall, features associated with the early Miocene—such as a lower Tibetan Plateau, the Rocky Mountains, and a deeper Panama Seaway—seem to favor PMOC over AMOC. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  3. The cross-equatorial southwesterly winds from the eastern equatorial Pacific direct moisture toward the Pacific coast of northwestern South America, where subsequent orographic lifting creates the wettest regions in the world. The Choco low-level jet is emblematic of broader westerly winds in this region and is projected to weaken by the end of the 21st century, but climate models show considerable disagreement about the extent of weakening. Using contemporary observations, we demonstrate that the configuration of westerly winds in the eastern equatorial Pacific is reflected by hydrogen isotopes in precipitation (δDp) in western Ecuador. As westerly winds strengthen, δDp increases from greater transport of δDvapor enriched in deuterium from the Eastern Pacific Warm Pool. We apply this framework to a new record of reconstructed δDp using leaf waxes in ocean sediments off the coast of Ecuador (ODP1239, 0◦40.32′ S, 82◦4.86′ W) that span the Plio-Pleistocene. Low δDp in the early Pliocene indicates weak westerly water vapor transport in a warmer climate state, which is attributed to a low sea surface temperature gradient between the cold tongue and off-equatorial regions in the eastern equatorial Pacific. Near 3 Ma, westerly water vapor transport weakens, possibly as a result of shifts in the Intertropical Convergence Zone forced by high latitude Northern Hemisphere cooling. In complementary isotope-enabled climate simulations, a weak Choco jet and westerly water vapor transport in the early Pliocene are matched by a decrease in δDp and hydroclimate changes in western Ecuador. Precipitation from the Choco jet can cause deadly landslides and weakened westerly winds in the early Pliocene implies a southward shift of these hazards along the Pacific coast of northwestern South America in the future. 
    more » « less
  4. Here, we show that the Last Glacial Maximum (LGM) provides a stronger constraint on equilibrium climate sensitivity (ECS), the global warming from increasing greenhouse gases, after accounting for temperature patterns. Feedbacks governing ECS depend on spatial patterns of surface temperature (“pattern effects”); hence, using the LGM to constrain future warming requires quantifying how temperature patterns produce different feedbacks during LGM cooling versus modern-day warming. Combining data assimilation reconstructions with atmospheric models, we show that the climate is more sensitive to LGM forcing because ice sheets amplify extratropical cooling where feedbacks are destabilizing. Accounting for LGM pattern effects yields a median modern-day ECS of 2.4°C, 66% range 1.7° to 3.5°C (1.4° to 5.0°C, 5 to 95%), from LGM evidence alone. Combining the LGM with other lines of evidence, the best estimate becomes 2.9°C, 66% range 2.4° to 3.5°C (2.1° to 4.1°C, 5 to 95%), substantially narrowing uncertainty compared to recent assessments. 
    more » « less
  5. Abstract The tropical Pacific climate has an outsized impact on global climate, yet future projections are poorly constrained. Data‐model comparisons from the mid‐Pliocene warm period (3.3 million years ago) can help investigate warm climate dynamics and evaluate model behavior. Here we compare proxy records to PlioMIP2 models and a model with modified cloud albedo. Relative to modern, the mid‐Pliocene warm period records show subsurface warming across the tropical Pacific, strong eastern Pacific surface warming and weak western Pacific surface warming. Using clustering analyses to group model behavior relative to the proxy data, we find the model cluster with the best fit with the proxy data has enhanced warming in mid‐latitude thermocline source water regions which connect to the equator through the ventilated thermocline. Our study shows tropical ocean heat content during the mid‐Pliocene warm period was higher than today and has broad implications for the ocean's ability to absorb anthropogenic heat. 
    more » « less
    Free, publicly-accessible full text available August 28, 2026
  6. Abstract CO 2 -forced surface warming in general circulation models (GCMs) is initially polar amplified in the Arctic but not in the Antarctic—a largely hemispherically antisymmetric signal. Nevertheless, we show in CESM1 and 11 LongRunMIP GCMs that the hemispherically symmetric component of global-mean-normalized, zonal-mean warming ( ) under 4 × CO 2 changes weakly or becomes modestly more polar amplified from the first decade to near-equilibrium. Conversely, the antisymmetric warming component ( ) weakens with time in all models, modestly in some including FAMOUS, but effectively vanishing in others including CESM1. We explore mechanisms underlying the robust behavior with a diffusive moist energy balance model (MEBM), which given radiative feedback parameter ( λ ) and ocean heat uptake ( ) fields diagnosed from CESM1 adequately reproduces the CESM1 and fields. In further MEBM simulations perturbing λ and , is sensitive to their symmetric components only, and more to that of λ . A three-box, two-time-scale model fitted to FAMOUS and CESM1 reveals a curiously short Antarctic fast-response time scale in FAMOUS. In additional CESM1 simulations spanning a broader range of forcings, changes modestly across 2–16 × CO 2 , and in a Pliocene-like simulation is more polar amplified but likewise approximately time invariant. Determining the real-world relevance of these behaviors—which imply that a surprising amount of information about near-equilibrium polar amplification emerges within decades—merits further study. 
    more » « less
  7. Abstract The Miocene (∼23–5 Ma) experienced substantial paleogeographic changes, including the shoaling of the Panama Seaway and closure of the Tethys Seaway, which altered exchange pathways between the Pacific and Atlantic Oceans. Changes in continental configuration and topography likely also influenced global wind patterns. Here, we investigate how these changes affected surface wind‐driven gyre circulation and interbasin volume transport using 14 fully coupled climate model simulations of the early and middle Miocene. The North and South Atlantic gyres, along with the South Pacific gyre, are weaker in the Miocene simulations compared to pre‐industrial (PI), while the North Pacific gyres are stronger. These changes largely follow the wind stress curl and basin width changes. Westward flow through the Panama Seaway occurs only in early Miocene simulations when the Tethys Seaway is open and transports are strongly westward. As the Tethys transport declines, flow across the Panama Seaway gradually reverses from westward (into the Pacific) to eastward (into the Atlantic). In simulations with a closed Tethys Seaway, the Panama transport is consistently eastward. The Southern Hemisphere westerlies are weaker than PI in all simulations, contributing to a reduced Antarctic Circumpolar Current (ACC) in 11 of the 14 cases. In the remaining three, a stronger ACC is simulated, likely due to a combination of enhanced meridional density gradients and model‐dependent sensitivities. These findings highlight how changes in Miocene seaways and wind patterns reshaped ocean circulation, influencing interbasin exchange, thermohaline properties, and global climate. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  8. Abstract Oxygen minimum zones (OMZs) play a critical role in global biogeochemical cycling and act as barriers to dispersal for marine organisms. OMZs are currently expanding and intensifying with climate change, however past distributions of OMZs are relatively unknown. Here we present evidence for widespread pelagic OMZs during the Pliocene (5.3-2.6 Ma), the most recent epoch with atmospheric CO2analogous to modern (~400-450 ppm). The global distribution of OMZ-affiliated planktic foraminifer,Globorotaloides hexagonus, and Earth System and Species Distribution Models show that the Indian Ocean, Eastern Equatorial Pacific, eastern South Pacific, and eastern North Atlantic all supported OMZs in the Pliocene, as today. By contrast, low-oxygen waters were reduced in the North Pacific and expanded in the North Atlantic in the Pliocene. This spatially explicit perspective reveals that a warmer world can support both regionally expanded and contracted OMZs, with intermediate water circulation as a key driver. 
    more » « less