skip to main content

Search for: All records

Creators/Authors contains: "Burruss, N. Dylan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Grassland‐to‐shrubland state change has been widespread in arid lands globally. Long‐term records at the Jornada Basin USDA‐LTER site in the North American Chihuahuan Desert document the time series of transition from grassland dominance in the 1850s to shrubland dominance in the 1990s. This broadscale change ostensibly resulted from livestock overgrazing in conjunction with periodic drought and represents the classic “grassland‐to‐shrubland” regime shift. However, finer‐scale observations reveal a more nuanced view of this state change that includes transitions from dominance by one shrub functional type to another (e.g., based on leaf habit [evergreen vs. deciduous], N2fixation potential, and drought tolerance). We analyzed the Jornada Basin historic vegetation data using a fine‐scale grid and classified the dominant vegetation in the resulting 890 cells on each of four dates (1858, 1915, 1928, and 1998). This analysis allowed us to quantify on contrasting soil geomorphic units the rate and spatial distribution of: (1) state change from grasslands to shrublands across the Jornada Basin, (2) transitions between shrub functional groups, and (3) transitions from shrub‐to‐grass dominance. Results from our spatially explicit, decadal timescale perspective show that: (1) shrubland ecosystems developing on former grasslands were spatially and temporally more dynamic than has been generally presumed, (2) in some locations, shrublands initially developing on grasslands subsequently transitioned to ecosystems dominated by a different shrub functional type, with these changes in shrub composition likely involving changes in soil properties, and (3) some shrub‐dominated locations have reverted to grass dominance. Accordingly, traditional, broad characterizations of “grassland‐to‐shrubland” state change may be too simplistic. An accounting of these complexities and transitions from one shrub functional group to another is important for projecting state change consequences for ecosystem processes. Understanding the mechanisms, drivers, and influence of interactions between patterns and processes on transitions between shrub states defined by woody plant functional types will be germane to predicting future landscape change.

    more » « less
  2. Abstract

    Dryland vegetation is influenced by biotic and abiotic land surface template (LST) conditions and precipitation (PPT), such that enhanced vegetation responses to periods of high PPT may be shaped by multiple factors. High PPT stochasticity in the Chihuahuan Desert suggests that enhanced responses across broad geographic areas are improbable. Yet, multiyear wet periods may homogenize PPT patterns, interact with favorable LST conditions, and in this way produce enhanced responses. In contrast, periods containing multiple extreme high PPT pulse events could overwhelm LST influences, suggesting a divergence in how climate change could influence vegetation by altering PPT periods. Using a suite of stacked remote sensing and LST datasets from the 1980s to the present, we evaluated PPT‐LST‐Vegetation relationships across this region and tested the hypothesis that enhanced vegetation responses would be initiated by high PPT, but that LST favorability would underlie response magnitude, producing geographic differences between wet periods. We focused on two multiyear wet periods; one of above average, regionally distributed PPT (1990–1993) and a second with locally distributed PPT that contained two extreme wet pulses (2006–2008). 1990–1993 had regional vegetation responses that were correlated with soil properties. 2006–2008 had higher vegetation responses over a smaller area that were correlated primarily with PPT and secondarily to soil properties. Within the overlapping PPT area of both periods, enhanced vegetation responses occurred in similar locations. Thus, LST favorability underlied the geographic pattern of vegetation responses, whereas PPT initiated the response and controlled response area and maximum response magnitude. Multiyear periods provide foresight on the differing impacts that directional changes in mean climate and changes in extreme PPT pulses could have in drylands. Our study shows that future vegetation responses during wet periods will be tied to LST favorability, yet will be shaped by the pattern and magnitude of multiyear PPT events.

    more » « less
  3. Abstract

    Vesicular stomatitis (VS) is an arthropod‐borne viral disease that negatively impacts domestic livestock and wildlife hosts, and economically impacts both private animal owners and the commercial livestock industry. Previous phylogenetic studies, based on partial P gene sequences, suggested that outbreak cycles of the virus (VSV) exhibit a two‐phase dynamic (i.e., incursion and expansion). A single viral lineage from endemic areas of Mexico introduced into the southern United States during an incursion year (2004), can overwinter, and then expand throughout the western United States during the subsequent spring and summer seasons (2005). Our objective was to build on this past research using full‐length viral genomic sequences from Mexico and the United States from the same outbreak, and a large suite of geospatial data to identify the environmental factors that influence VSV evolution in the United States and potentially drive the incursion–expansion dynamics. Our phylogeographic analysis confirmed that a single VS New Jersey virus (VSNJV) lineage initiated the 2004 incursion year outbreak was subject to decreasing genetic divergence during the 2004–2006 outbreak cycle, and likely overwintered between the 2004–2006 outbreak seasons. However, rather than a simple geographic relationship, viral genetic sublineages or patristic groups identified as part of our study, were found to be associated with seasonally varying evaporative demand, soil moisture, and precipitation. Our results suggest a functional role for these environmental factors in shaping the evolution and ecology of VSNJV. We speculate a nexus to insect‐vector switching and possible adaptation to local environmental conditions to help explain the observed incursion–expansion dynamic in the United States in the 2004–2006 outbreak. Our approach of linking the phylogeography of a virus with the ecology of insect vectors can be applied to other vector‐borne diseases.

    more » « less