skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Caicedo, Carlos"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2024
  2. Command and control (C2) data links over cellular networks is envisioned to be a reliable communications modality for various types of missions for Unmanned Aircraft System (UAS). The planning of UAS traffic and the provision of cellular communication resources are cross-coupled decisions that should be analyzed together to understand the quality of service such a modality can provide that meets business needs. The key to effective planning is the accurate estimation of communication link quality and the resource usage for a given air traffic requirement. In this work, a simulation and modelling framework is developed that integrates two open-source simulation platforms, Repast Simphony and ns-3, to generate UAS missions over different geographical areas and simulates the provision of 4G/5G cellular network connectivity to support their C2 and mission data links. To the best of our knowledge, this is the first simulator that co-simulates air traffic and cellular network communications for UAS while leveraging standardized 3GPP propagation models and incorporating detailed management of communication channels (i.e., resource blocks) at the cellular base station level. Three experiments were executed to demonstrate how the integrated simulation platform can be used to provide guidelines in communication resource allocation, air traffic management, and mission safety management in beyond visual line of sight (BVLOS) operations. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)
  7. Small Unmanned Aircraft Systems (sUAS) will be an important component of the smart city and intelligent transportation environments of the near future. The demand for sUAS related applications, such as commercial delivery and land surveying, is expected to grow rapidly in next few years. In general, sUAS traffic routing and management functions are needed to coordinate the launching of sUAS from different launch sites and determine their trajectories to avoid conflict while considering several other constraints such as expected arrival time, minimum flight energy, and availability of communication resources. However, as the airborne sUAS density grows in a certain area, it is difficult to foresee the potential airspace and communications resource conflicts and make immediate decisions to avoid them. To address this challenge, we present a temporal and spatial routing algorithm and simulation platform for sUAS trajectory management in a high density urban area that plans sUAS movements in a spatial and temporal maze taking into account obstacles that are either static or dynamic in time. The routing allows the sUAS to avoid static no-fly areas (i.e. static obstacles) or other in-flight sUAS and areas that have congested communication resources (i.e. dynamic obstacles). The algorithm is evaluated using an agent-based simulation platform. The simulation results show that the proposed algorithm outperforms other route management algorithms in many areas, especially in processing speed and memory efficiency. Detailed comparisons are provided for the sUAS flight time, the overall throughput, conflict rate and communication resource utilization. The results demonstrate that our proposed algorithm can be used to address the airspace and communication resource utilization needs for a next generation smart city and smart transportation. 
    more » « less
  8. Small Unmanned Aircraft Systems (sUAS) will be an important component of the smart city and intelligent transportation environments of the near future. The demand for sUAS related applications, such as commercial delivery and land surveying, is expected to grow rapidly in next few years. In general, sUAS traffic scheduling and management functions are needed to coordinate the launching of sUAS from different launch sites and plan their trajectories to avoid conflict while considering several other constraints such as expected arrival time, minimum flight energy, and availability of communication resources. However, as the airbone sUAS density grows in a certain area, it is difficult to foresee the potential airspace and communications resource conflicts and make immediate decisions to avoid them. To address this challenge, we present a temporal and spatial routing algorithm for sUAS trajectory management in a high density urban area. It plans sUAS movements in a spatial and temporal maze with the consideration of obstacles that are either static or dynamic in time. The routing allows the sUAS to avoid static no-fly areas (i.e. static obstacles) or other in-flight sUAS and areas that have congested communication resources (i.e. dynamic obstacles). The algorithm is evaluated using an agent-based simulation platform. The simulation results show that the proposed algorithm outperforms reference route management algorithms in many areas, especially in processing speed and memory efficiency. Detailed comparisons are provided for the sUAS flight time, the overall throughput, the conflict rate and communication resource utilization. The results demonstrate that our proposed algorithm can be used as a solution to improve the efficiency of airspace and communication resource utilization for next generation smart city and smart transportation. 
    more » « less