skip to main content


Search for: All records

Creators/Authors contains: "Campagna, Giovanni"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Robust state tracking for task-oriented dialogue systems currently remains restricted to a few popular languages. This paper shows that given a large-scale dialogue data set in one language, we can automatically produce an effective semantic parser for other languages using machine translation. We propose automatic translation of dialogue datasets with alignment to ensure faithful translation of slot values and eliminate costly human supervision used in previous benchmarks. We also propose a new contextual semantic parsing model, which encodes the formal slots and values, and only the last agent and user utterances. We show that the succinct representation reduces the compounding effect of translation errors, without harming the accuracy in practice. We evaluate our approach on several dialogue state tracking benchmarks. On RiSAWOZ, CrossWOZ, CrossWOZ-EN, and MultiWOZ-ZH datasets we improve the state of the art by 11%, 17%, 20%, and 0.3% in joint goal accuracy. We present a comprehensive error analysis for all three datasets showing erroneous annotations can lead to misguided judgments on the quality of the model. Finally, we present RiSAWOZ English and German datasets, created using our translation methodology. On these datasets, accuracy is within 11% of the original showing that high-accuracy multilingual dialogue datasets are possible without relying on expensive human annotations. We release our datasets and software open source. 
    more » « less
  2. Previous attempts to build effective semantic parsers for Wizard-of-Oz (WOZ) conversations suffer from the difficulty in acquiring a high-quality, manually annotated training set. Approaches based only on dialogue synthesis are insufficient, as dialogues generated from state-machine based models are poor approximations of real-life conversations. Furthermore, previously proposed dialogue state representations are ambiguous and lack the precision necessary for building an effective agent.This paper proposes a new dialogue representation and a sample-efficient methodology that can predict precise dialogue states in WOZ conversations. We extended the ThingTalk representation to capture all information an agent needs to respond properly. Our training strategy is sample-efficient: we combine (1) few-shot data sparsely sampling the full dialogue space and (2) synthesized data covering a subset space of dialogues generated by a succinct state-based dialogue model. The completeness of the extended ThingTalk language is demonstrated with a fully operational agent, which is also used in training data synthesis. We demonstrate the effectiveness of our methodology on MultiWOZ 3.0, a reannotation of the MultiWOZ 2.1 dataset in ThingTalk. ThingTalk can represent 98% of the test turns, while the simulator can emulate 85% of the validation set. We train a contextual semantic parser using our strategy, and obtain 79% turn-by-turn exact match accuracy on the reannotated test set. 
    more » « less
  3. While Alexa can perform over 100,000 skills, its capability covers only a fraction of what is possible on the web. Individuals need and want to automate a long tail of web-based tasks which often involve visiting different websites and require programming concepts such as function composition, conditional, and iterative evaluation. This paper presents DIYA (Do-It-Yourself Assistant), a new system that empowers users to create personalized web-based virtual assistant skills that require the full generality of composable control constructs, without having to learn a formal programming language. With DIYA, the user demonstrates their task of interest in the browser and issues a few simple voice commands, such as naming the skills and adding conditions on the action. DIYA turns these multi-modal specifications into voice-invocable skills written in the ThingTalk 2.0 programming language we designed for this purpose. DIYA is a prototype that works in the Chrome browser. Our user studies show that 81% of the proposed routines can be expressed using DIYA. DIYA is easy to learn, and 80% of users surveyed find DIYA useful. 
    more » « less
  4. We present Chirpy Cardinal, an open-domain social chatbot. Aiming to be both informative and conversational, our bot chats with users in an authentic, emotionally intelligent way. By integrating controlled neural generation with scaffolded, hand-written dialogue, we let both the user and bot take turns driving the conversation, producing an engaging and socially fluent experience. Deployed in the fourth iteration of the Alexa Prize Socialbot Grand Challenge, Chirpy Cardinal handled thousands of conversations per day, placing second out of nine bots with an average user rating of 3.58/5. 
    more » « less
  5. Grounding natural language instructions on the web to perform previously unseen tasks enables accessibility and automation. We introduce a task and dataset to train AI agents from open-domain, step-by-step instructions originally written for people. We build RUSS (Rapid Universal Support Service) to tackle this problem. RUSS consists of two models: First, a BERT-LSTM with pointers parses instructions to ThingTalk, a domain-specific language we design for grounding natural language on the web. Then, a grounding model retrieves the unique IDs of any webpage elements requested in ThingTalk. RUSS may interact with the user through a dialogue (e.g. ask for an address) or execute a web operation (e.g. click a button) inside the web runtime. To augment training, we synthesize natural language instructions mapped to ThingTalk. Our dataset consists of 80 different customer service problems from help websites, with a total of 741 step-by-step instructions and their corresponding actions. RUSS achieves 76.7% end-to-end accuracy predicting agent actions from single instructions. It outperforms state-of-the-art models that directly map instructions to actions without ThingTalk. Our user study shows that RUSS is preferred by actual users over web navigation. 
    more » « less
  6. null (Ed.)
    We propose AutoQA, a methodology and toolkit to generate semantic parsers that answer questions on databases, with no manual effort. Given a database schema and its data, AutoQA automatically generates a large set of high-quality questions for training that covers different database operations. It uses automatic paraphrasing combined with template-based parsing to find alternative expressions of an attribute in different parts of speech. It also uses a novel filtered auto-paraphraser to generate correct paraphrases of entire sentences. We apply AutoQA to the Schema2QA dataset and obtain an average logical form accuracy of 62.9% when tested on natural questions, which is only 6.4% lower than a model trained with expert natural language annotations and paraphrase data collected from crowdworkers. To demonstrate the generality of AutoQA, we also apply it to the Overnight dataset. AutoQA achieves 69.8% answer accuracy, 16.4% higher than the state-of-the-art zero-shot models and only 5.2% lower than the same model trained with human data. 
    more » « less
  7. null (Ed.)
    We propose Semantic Parser Localizer (SPL), a toolkit that leverages Neural Machine Translation (NMT) systems to localize a semantic parser for a new language. Our methodology is to (1) generate training data automatically in the target language by augmenting machine-translated datasets with local entities scraped from public websites, (2) add a few-shot boost of human-translated sentences and train a novel XLMR-LSTM semantic parser, and (3) test the model on natural utterances curated using human translators. We assess the effectiveness of our approach by extending the current capabilities of Schema2QA, a system for English Question Answering (QA) on the open web, to 10 new languages for the restaurants and hotels domains. Our model achieves an overall test accuracy ranging between 61% and 69% for the hotels domain and between 64% and 78% for restaurants domain, which compares favorably to 69% and 80% obtained for English parser trained on gold English data and a few examples from validation set. We show our approach outperforms the previous state-of-the-art methodology by more than 30% for hotels and 40% for restaurants with localized ontologies for the subset of languages tested. Our methodology enables any software developer to add a new language capability to a QA system for a new domain, leveraging machine translation, in less than 24 hours. Our code is released open-source. 
    more » « less
  8. null (Ed.)
    Building a question-answering agent currently requires large annotated datasets, which are prohibitively expensive. This paper proposes Schema2QA, an open-source toolkit that can generate a Q&A system from a database schema augmented with a few annotations for each field. The key concept is to cover the space of possible compound queries on the database with a large number of in-domain questions synthesized with the help of a corpus of generic query templates. The synthesized data and a small paraphrase set are used to train a novel neural network based on the BERT pretrained model. We use Schema2QA to generate Q&A systems for five this http URL domains, restaurants, people, movies, books and music, and obtain an overall accuracy between 64% and 75% on crowdsourced questions for these domains. Once annotations and paraphrases are obtained for a this http URL schema, no additional manual effort is needed to create a Q&A agent for any website that uses the same schema. Furthermore, we demonstrate that learning can be transferred from the restaurant to the hotel domain, obtaining a 64% accuracy on crowdsourced questions with no manual effort. Schema2QA achieves an accuracy of 60% on popular restaurant questions that can be answered using this http URL. Its performance is comparable to Google Assistant, 7% lower than Siri, and 15% higher than Alexa. It outperforms all these assistants by at least 18% on more complex, long-tail questions. 
    more » « less
  9. null (Ed.)
    Zero-shot transfer learning for multi-domain dialogue state tracking can allow us to handle new domains without incurring the high cost of data acquisition. This paper proposes new zero-short transfer learning technique for dialogue state tracking where the in-domain training data are all synthesized from an abstract dialogue model and the ontology of the domain. We show that data augmentation through synthesized data can improve the accuracy of zero-shot learning for both the TRADE model and the BERT-based SUMBT model on the MultiWOZ 2.1 dataset. We show training with only synthesized in-domain data on the SUMBT model can reach about 2/3 of the accuracy obtained with the full training dataset. We improve the zero-shot learning state of the art on average across domains by 21%. 
    more » « less
  10. null (Ed.)
    Soteria is a user right management system designed to safeguard user-data privacy in a transparent and provable manner in compliance to regulations such as GDPR and CCPA. Soteria represents user data rights as formal executable sharing agreements, which can automatically be translated into a human readable form and enforced as data are queried. To support revocation and to prove compliance, an indelible, audited trail of the hash of data access and sharing agreements are stored on a two-layer distributed ledger. The main chain ensures partition tolerance and availability (PA) properties while side chains ensure consistency and availability (CA), thus providing the three properties of the CAP (consistency, availability, and partition tolerance) theorem. Besides depicting the two-layer architecture of Soteria, this paper evaluates representative consensus protocols and recommends side-chain and inter-chain management strategies for improving latency and throughput. 
    more » « less