skip to main content

Search for: All records

Creators/Authors contains: "Cannon, Sarah"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Finding outlying elementsin probability distributions can be a hard problem. Taking a real example from Voting Rights Act enforcement, we consider the problem of maximizing the number of simultaneous majority-minority districts in a political districting plan. An unbiased random walk on districting plans is unlikely to find plans that approach this maximum. A common search approach is to use abiased random walk: preferentially select districting plans with more majority-minority districts. Here, we present a third option, calledshort bursts, in which an unbiased random walk is performed for a small number of steps (called theburst length), then re-started from the most extreme plan that was encountered in the last burst. We give empirical evidence that short-burst runs outperform biased random walks for the problem of maximizing the number of majority-minority districts, and that there are many values of burst length for which we see this improvement. Abstracting from our use case, we also consider short bursts where the underlying state space is a line with various probability distributions, and then explore some features of more complicated state spaces and how these impact the effectiveness of short bursts.

  2. At the macroscale, controlling robotic swarms typically uses substantial memory, processing power, and coordination unavailable at the microscale, e.g., for colloidal robots, which could be useful for fighting disease, fabricating intelligent textiles, and designing nanocomputers. To develop principles that can leverage physical interactions and thus be used across scales, we take a two-pronged approach: a theoretical abstraction of self-organizing particle systems and an experimental robot system of active cohesive granular matter that intentionally lacks digital electronic computation and communication, using minimal (or no) sensing and control. As predicted by theory, as interparticle attraction increases, the collective transitions from dispersed to a compact phase. When aggregated, the collective can transport non-robot “impurities,” thus performing an emergent task driven by the physics underlying the transition. These results reveal a fruitful interplay between algorithm design and active matter robophysics that can result in principles for programming collectives without the need for complex algorithms or capabilities.
  3. Chawla, Shuchi (Ed.)
    Understanding the complexity of approximately counting the number of weighted or unweighted independent sets in a bipartite graph (#BIS) is a central open problem in the field of approximate counting. Here we consider a subclass of this problem and give an FPTAS for approximating the partition function of the hard-core model for bipartite graphs when there is sufficient imbalance in the degrees or fugacities between the sides (L, R) of the bipartition. This includes, among others, the biregular case when λ = 1 (approximating the number of independent sets of G) and Delta_R >= 7 Delta_L log(Delta_L). Our approximation algorithm is based on truncating the cluster expansion of a polymer model partition function that expresses the hard-core partition function in terms of deviations from independent sets that are empty on one side of the bipartition. Further consequences of this method for unbalanced bipartite graphs include an efficient sampling algorithm for the hard-core model and zero-freeness results for the partition function with complex fugacities. By utilizing connections between the cluster expansion and joint cumulants of certain random variables, we go beyond previous algorithmic applications of the cluster expansion to prove that the hard-core model exhibits exponential decay of correlations for allmore »graphs and fugacities satisfying our conditions. This illustrates the applicability of statistical mechanics tools to algorithmic problems and refines our understanding of the connections between different methods of approximate counting.« less
  4. We present and rigorously analyze the behavior of a distributed, stochastic algorithm for separation and integration in self-organizing particle systems, an abstraction of programmable matter. Such systems are composed of individual computational particles with limited memory, strictly local communication abilities, and modest computational power. We consider heterogeneous particle systems of two different colors and prove that these systems can collectively separate into different color classes or integrate, indifferent to color. We accomplish both behaviors with the same fully distributed, local, stochastic algorithm. Achieving separation or integration depends only on a single global parameter determining whether particles prefer to be next to other particles of the same color or not; this parameter is meant to represent external, environmental influences on the particle system. The algorithm is a generalization of a previous distributed, stochastic algorithm for compression (PODC '16), which can be viewed as a special case of separation where all particles have the same color. It is significantly more challenging to prove that the desired behavior is achieved in the heterogeneous setting, however, even in the bichromatic case we focus on. This requires combining several new techniques, including the cluster expansion from statistical physics, a new variant of the bridging argumentmore »of Miracle, Pascoe and Randall (RANDOM '11), the high-temperature expansion of the Ising model, and careful probabilistic arguments.« less