skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Cappa, Christopher D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 14, 2026
  2. Relative humidity, NOx, and NH3can all alter the molecular, optical, and hygroscopic properties of naphthalene SOAs, with a complex synergy between these factors. 
    more » « less
  3. Ice nucleating particles (INPs) in sea spray aerosol (SSA) are important for ice formation in clouds over oceans. We found that SSA INP concentrations during a phytoplankton bloom were degraded with exposure to 3 to 8 days of atmospheric oxidation. 
    more » « less
  4. null (Ed.)
  5. Abstract. The oxidation of dimethyl sulfide (DMS;CH3SCH3), emitted from the surface ocean, contributes to theformation of Aitken mode particles and their growth to cloud condensationnuclei (CCN) sizes in remote marine environments. It is not clear whetherother less commonly measured marine-derived, sulfur-containing gases sharesimilar dynamics to DMS and contribute to secondary marine aerosolformation. Here, we present measurements of gas-phase volatile organosulfurmolecules taken with a Vocus proton-transfer-reaction high-resolutiontime-of-flight mass spectrometer during a mesocosm phytoplankton bloomexperiment using coastal seawater. We show that DMS, methanethiol (MeSH;CH3SH), and benzothiazole (C7H5NS) account for on averageover 90 % of total gas-phase sulfur emissions, with non-DMS sulfur sourcesrepresenting 36.8 ± 7.7 % of sulfur emissions during the first 9 d of the experiment in the pre-bloom phase prior to major biologicalgrowth, before declining to 14.5 ± 6.0 % in the latter half of theexperiment when DMS dominates during the bloom and decay phases. The molarratio of DMS to MeSH during the pre-bloom phase (DMS : MeSH = 4.60 ± 0.93) was consistent with the range of previously calculated ambient DMS-to-MeSH sea-to-air flux ratios. As the experiment progressed, the DMS to MeSHemission ratio increased significantly, reaching 31.8 ± 18.7 duringthe bloom and decay. Measurements of dimethylsulfoniopropionate (DMSP),heterotrophic bacteria, and enzyme activity in the seawater suggest theDMS : MeSH ratio is a sensitive indicator of the bacterial sulfur demand andthe composition and magnitude of available sulfur sources in seawater. Theevolving DMS : MeSH ratio and the emission of a new aerosol precursor gas,benzothiazole, have important implications for secondary sulfate formationpathways in coastal marine environments. 
    more » « less
  6. null (Ed.)