skip to main content


Search for: All records

Creators/Authors contains: "Carney, Ryan M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Christofferson, Rebecca C (Ed.)
    Background

    Anopheles stephensiis an invasive malaria vector in Africa that threatens to put an additional 126 million people at risk of malaria if it continues to spread. The island nation of Mauritius is highly connected to Asia and Africa and is at risk of introduction due to this connectivity. For early detection ofAn.stephensi, the Vector Biology and Control Division under the Ministry of Health in Mauritius, leveraged a well-establishedAedesprogram, asAn.stephensiis known to shareAedeshabitats. These efforts triggered multisectoral coordination and cascading benefits of integrated vector and One Health approaches.

    Methods

    Beginning June 2021, entomological surveys were conducted at points of entry (seaport, airport) and on ships transporting livestock in collaboration with the Civil Aviation Department, the Mauritian Port Authority and National Veterinary Services.

    A total of 18, 39, 723 mosquito larval surveys were respectively conducted in the airport, seaport, and other localities in Mauritius while two, 20, and 26 adult mosquito surveys were respectively conducted in the airport, seaport, and twenty-six animal assembly points. Alongside adult mosquito surveys, surveillance of vectors of veterinary importance (e.g.-Culicoidesspp.) was also carried out in collaboration with National Parks and Conservation Service and land owners.

    Results

    A total of 8,428 adult mosquitoes were collected and 1,844 larval habitats were positive for mosquitoes. All collected mosquitoes were morphologically identified and 151Anophelesand 339Aedesmosquitoes were also molecularly characterized. Mosquito species detected wereAedes albopictus,Anopheles arabiensis,An.coustani,An.merus,Culex quinquefasciatus,Cx.thalassiusandLutzia tigripes.Anopheles stephensiwas not detected. The One Health approach was shared with the French Agricultural Research Centre for International Development (CIRAD), strengthening collaboration between Mauritius and Réunion Island on vector surveillance at entry points and insecticide resistance monitoring. The Indian Ocean Commission (IOC) was also alerted to the risk ofAn.stephensi, leading to regional efforts supporting trainings and development of a response strategy toAn.stephensibringing together stakeholders from Comoros, Madagascar, Mauritius, Réunion Island and Seychelles.

    Conclusions

    Mauritius is a model system showing how existing public health entomology capabilities can be used to enhance vector surveillance and control and create multisectoral networks to respond to any emerging public and veterinary health vector-borne disease threat.

     
    more » « less
    Free, publicly-accessible full text available September 11, 2025
  2. Free, publicly-accessible full text available February 5, 2025
  3. Abstract

    The ability to distinguish between the abdominal conditions of adult female mosquitoes has important utility for the surveillance and control of mosquito-borne diseases. However, doing so requires entomological training and time-consuming manual effort. Here, we design computer vision techniques to determine stages in the gonotrophic cycle of female mosquitoes from images. Our dataset was collected from 139 adult female mosquitoes across three medically important species—Aedes aegypti,Anopheles stephensi, andCulex quinquefasciatus—and all four gonotrophic stages of the cycle (unfed, fully fed, semi-gravid, and gravid). From these mosquitoes and stages, a total of 1959 images were captured on a plain background via multiple smartphones. Subsequently, we trained four distinct AI model architectures (ResNet50,MobileNetV2,EfficientNet-B0, andConvNeXtTiny), validated them using unseen data, and compared their overall classification accuracies. Additionally, we analyzed t-SNE plots to visualize the formation of decision boundaries in a lower-dimensional space. Notably,ResNet50andEfficientNet-B0demonstrated outstanding performance with an overall accuracy of 97.44% and 93.59%, respectively.EfficientNet-B0demonstrated the best overall performance considering computational efficiency, model size, training speed, and t-SNE decision boundaries. We also assessed the explainability of thisEfficientNet-B0model, by implementing Grad-CAMs—a technique that highlights pixels in an image that were prioritized for classification. We observed that the highest weight was for those pixels representing the mosquito abdomen, demonstrating that our AI model has indeed learned correctly. Our work has significant practical impact. First, image datasets for gonotrophic stages of mosquitoes are not yet available. Second, our algorithms can be integrated with existing citizen science platforms that enable the public to record and upload biological observations. With such integration, our algorithms will enable the public to contribute to mosquito surveillance and gonotrophic stage identification. Finally, we are aware of work today that uses computer vision techniques for automated mosquito species identification, and our algorithms in this paper can augment these efforts by enabling the automated detection of gonotrophic stages of mosquitoes as well.

     
    more » « less
  4. Abstract Background

    Mosquitoes and the diseases they transmit pose a significant public health threat worldwide, causing more fatalities than any other animal. To effectively combat this issue, there is a need for increased public awareness and mosquito control. However, traditional surveillance programs are time-consuming, expensive, and lack scalability. Fortunately, the widespread availability of mobile devices with high-resolution cameras presents a unique opportunity for mosquito surveillance. In response to this, the Global Mosquito Observations Dashboard (GMOD) was developed as a free, public platform to improve the detection and monitoring of invasive and vector mosquitoes through citizen science participation worldwide.

    Methods

    GMOD is an interactive web interface that collects and displays mosquito observation and habitat data supplied by four datastreams with data generated by citizen scientists worldwide. By providing information on the locations and times of observations, the platform enables the visualization of mosquito population trends and ranges. It also serves as an educational resource, encouraging collaboration and data sharing. The data acquired and displayed on GMOD is freely available in multiple formats and can be accessed from any device with an internet connection.

    Results

    Since its launch less than a year ago, GMOD has already proven its value. It has successfully integrated and processed large volumes of real-time data (~ 300,000 observations), offering valuable and actionable insights into mosquito species prevalence, abundance, and potential distributions, as well as engaging citizens in community-based surveillance programs.

    Conclusions

    GMOD is a cloud-based platform that provides open access to mosquito vector data obtained from citizen science programs. Its user-friendly interface and data filters make it valuable for researchers, mosquito control personnel, and other stakeholders. With its expanding data resources and the potential for machine learning integration, GMOD is poised to support public health initiatives aimed at reducing the spread of mosquito-borne diseases in a cost-effective manner, particularly in regions where traditional surveillance methods are limited. GMOD is continually evolving, with ongoing development of powerful artificial intelligence algorithms to identify mosquito species and other features from submitted data. The future of citizen science holds great promise, and GMOD stands as an exciting initiative in this field.

     
    more » « less
  5. Even as novel technologies emerge and medicines advance, pathogen-transmitting mosquitoes pose a deadly and accelerating public health threat. Detecting and mitigating the spread of Anopheles stephensi in Africa is now critical to the fight against malaria, as this invasive mosquito poses urgent and unprecedented risks to the continent. Unlike typical African vectors of malaria, An. stephensi breeds in both natural and artificial water reservoirs, and flourishes in urban environments. With An. stephensi beginning to take hold in heavily populated settings, citizen science surveillance supported by novel artificial intelligence (AI) technologies may offer impactful opportunities to guide public health decisions and community-based interventions. Coalitions like the Global Mosquito Alert Consortium (GMAC) and our freely available digital products can be incorporated into enhanced surveillance of An. stephensi and other vector-borne public health threats. By connecting local citizen science networks with global databases that are findable, accessible, interoperable, and reusable (FAIR), we are leveraging a powerful suite of tools and infrastructure for the early detection of, and rapid response to, (re)emerging vectors and diseases. 
    more » « less
  6. ABSTRACT

    Within the contiguous USA, Florida is unique in having tropical and subtropical climates, a great abundance and diversity of mosquito vectors, and high rates of human travel. These factors contribute to the state being the national ground zero for exotic mosquito-borne diseases, as evidenced by local transmission of viruses spread by Aedes aegypti, including outbreaks of dengue in 2022 and Zika in 2016. Because of limited treatment options, integrated vector management is a key part of mitigating these arboviruses. Practical knowledge of when and where mosquito populations of interest exist is critical for surveillance and control efforts, and habitat predictions at various geographic scales typically rely on ecological niche modeling. However, most of these models, usually created in partnership with academic institutions, demand resources that otherwise may be too time-demanding or difficult for mosquito control programs to replicate and use effectively. Such resources may include intensive computational requirements, high spatiotemporal resolutions of data not regularly available, and/or expert knowledge of statistical analysis. Therefore, our study aims to partner with mosquito control agencies in generating operationally useful mosquito abundance models. Given the increasing threat of mosquito-borne disease transmission in Florida, our analytic approach targets recent Ae. aegypti abundance in the Tampa Bay area. We investigate explanatory variables that: 1) are publicly available, 2) require little to no preprocessing for use, and 3) are known factors associated with Ae. aegypti ecology. Out of our 4 final models, none required more than 5 out of the 36 predictors assessed (13.9%). Similar to previous literature, the strongest predictors were consistently 3- and 4-wk temperature and precipitation lags, followed closely by 1 of 2 environmental predictors: land use/land cover or normalized difference vegetation index. Surprisingly, 3 of our 4 final models included one or more socioeconomic or demographic predictors. In general, larger sample sizes of trap collections and/or citizen science observations should result in greater confidence in model predictions and validation. However, given disparities in trap collections across jurisdictions, individual county models rather than a multicounty conglomerate model would likely yield stronger model fits. Ultimately, we hope that the results of our assessment will enable more accurate and precise mosquito surveillance and control of Ae. aegypti in Florida and beyond.

     
    more » « less