skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Carrasco_Kind, M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We use galaxy cluster abundance measurements from the South Pole Telescope enhanced by multicomponent matched filter confirmation and complemented with mass information obtained using weak-lensing data from Dark Energy Survey Year 3 (DES Y3) and targeted Hubble Space Telescope observations for probing deviations from the cold dark matter paradigm. Concretely, we consider a class of dark sector models featuring interactions between dark matter (DM) and a dark radiation (DR) component within the framework of the effective theory of structure formation (ETHOS). We focus on scenarios that lead to power suppression over a wide range of scales, and thus can be tested with data sensitive to large scales, as realized, for example, for DM–DR interactions following from an unbroken non-Abelian S U ( N ) gauge theory (interaction rate with power-law index n = 0 within the ETHOS parametrization). Cluster abundance measurements are mostly sensitive to the amount of DR interacting with DM, parametrized by the ratio of DR temperature to the cosmic microwave background (CMB) temperature, ξ DR = T DR / T CMB . We find an upper limit ξ DR < 17 % at 95% credibility. When the cluster data are combined with Planck 2018 CMB data along with baryon acoustic oscillation (BAO) measurements we find ξ DR < 10 % , corresponding to a limit on the abundance of interacting DR that is around 3 times tighter than that from CMB + BAO data alone. We also discuss the complementarity of weak lensing informed cluster abundance studies with probes sensitive to smaller scales, explore the impact on our analysis of massive neutrinos, and comment on a slight preference for the presence of a nonzero interacting DR abundance, which enables a physical solution to the S 8 tension. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. Cosmic shear, galaxy clustering, and the abundance of massive halos each probe the large-scale structure of the Universe in complementary ways. We present cosmological constraints from the joint analysis of the three probes, building on the latest analyses of the lensing-informed abundance of clusters identified by the South Pole Telescope (SPT) and of the auto- and cross-correlation of galaxy position and weak lensing measurements ( 3 × 2 pt ) in the Dark Energy Survey (DES). We consider the cosmological correlation between the different tracers and we account for the systematic uncertainties that are shared between the large-scale lensing correlation functions and the small-scale lensing-based cluster mass calibration. Marginalized over the remaining Λ cold dark matter ( Λ CDM ) parameters (including the sum of neutrino masses) and 52 astrophysical modeling parameters, we measure Ω m = 0.300 ± 0.017 and σ 8 = 0.797 ± 0.026 . Compared to constraints from primary cosmic microwave background (CMB) anisotropies, our constraints are only 15% wider with a probability to exceed of 0.22 ( 1.2 σ ) for the two-parameter difference. We further obtain S 8 σ 8 ( Ω m / 0.3 ) 0.5 = 0.796 ± 0.013 which is lower than the measurement at the 1.6 σ level. The combined SPT cluster, DES 3 × 2 pt , and datasets mildly prefer a nonzero positive neutrino mass, with a 95% upper limit m ν < 0.25 eV on the sum of neutrino masses. Assuming a w CDM model, we constrain the dark energy equation of state parameter w = 1.1 5 0.17 + 0.23 and when combining with primary CMB anisotropies, we recover w = 1.2 0 0.09 + 0.15 , a 1.7 σ difference with a cosmological constant. The precision of our results highlights the benefits of multiwavelength multiprobe cosmology and our analysis paves the way for upcoming joint analyses of next-generation datasets. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  3. Abstract We report the methods of and initial scientific inferences from the extraction of precision photometric information for the >800 trans-Neptunian objects (TNOs) discovered in the images of the Dark Energy Survey (DES). Scene-modeling photometry is used to obtain shot-noise-limited flux measures for each exposure of each TNO, with background sources subtracted. Comparison of double-source fits to the pixel data with single-source fits are used to identify and characterize two binary TNO systems. A Markov Chain Monte Carlo method samples the joint likelihood of the intrinsic colors of each source as well as the amplitude of its flux variation, given the time series of multiband flux measurements and their uncertainties. A catalog of these colors and light-curve amplitudesAis included with this publication. We show how to assign a likelihood to the distributionq(A) of light-curve amplitudes in any subpopulation. Using this method, we find decisive evidence (i.e., evidence ratio <0.01) that cold classical (CC) TNOs with absolute magnitude 6 <Hr< 8.2 are more variable than the hot classical (HC) population of the sameHr, reinforcing theories that the former form in situ and the latter arise from a different physical population. Resonant and scattering TNOs in thisHrrange have variability consistent with either the HCs or CCs. DES TNOs withHr< 6 are seen to be decisively less variable than higher-Hrmembers of any dynamical group, as expected. More surprising is that detached TNOs are decisively less variable than scattering TNOs, which requires them to have distinct source regions or some subsequent differential processing. 
    more » « less