Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The presence of an aerosol layer in the upper troposphere/lower stratosphere (UT/LS) in South America was identified with the Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA-2). This layer, which we shall refer to as the South American tropopause aerosol layer (SATAL), was identified over the Amazon basin at altitudes between 11 and 14 km. It exhibits a seasonal behavior similar to the Asian tropopause aerosol layer (ATAL) and the North American tropopause aerosol layer (NATAL). The SATAL is observed from October to March, coinciding with the presence of the South American monsoon. It forms first in the eastern Amazon basin in October, then moves to the southern Amazon, where it weakens in December–January and finally dissipates in February–March. We hypothesize that two main factors influence the SATAL formation in the UT/LS: 1) the source of aerosols from Africa and 2) the updraft mass flux from deep convective systems during the active phase of the South American monsoon system that transports aerosols to the UT/LS. Further satellite observations of aerosols and field campaigns are needed to provide useful information to find the origin and composition of the aerosols in the UT/LS during the South American monsoon.more » « less
-
Abstract Northerly low-level jets (LLJ) along the eastern Andes are important conduits of moisture transport and play central roles in modulating precipitation in South America. This study further investigates the variability of the LLJ during extended austral summers. A new method characterizes the spatial extent of the LLJ and finds four distinct types: Central, Northern, Andes and Peru. We show the existence of specific evolutions such that the LLJ may initiate in the central region, expands along the Andes and terminates in the northern region. Conversely, the LLJ may propagate from north-to-south. The spatiotemporal evolution of the LLJ is remotely forced by Rossby wave trains propagating from the Pacific Ocean towards South America, and the different phases of the wave trains favor the occurrences of Central, Northern or Andes types. Occurrences of Central and Northern types are more frequent in El Niño and La Niña years, respectively. The persistence of precipitation is shown to be directly related to the persistence of the LLJ. Lastly, the Madden-Julian Oscillation plays an important role in generating wave trains modulating the frequency of LLJ, especially the Central type.more » « less
-
Each year, wildfires ravage the western U.S. and change the lives of millions of inhabitants. Situated in southern California, coastal Santa Barbara has witnessed devastating wildfires in the past decade, with nearly all ignitions started by humans. Therefore, estimating the risk imposed by unplanned ignitions in this fire-prone region will further increase resilience toward wildfires. Currently, a fire-risk map does not exist in this region. The main objective of this study is to provide a spatial analysis of regions at high risk of fast wildfire spread, particularly in the first two hours, considering varying scenarios of ignition locations and atmospheric conditions. To achieve this goal, multiple wildfire simulations were conducted using the FARSITE fire spread model with three ignition modeling methods and three wind scenarios. The first ignition method considers ignitions randomly distributed in 500 m buffers around previously observed ignition sites. Since these ignitions are mainly clustered around roads and trails, the second method considers a 50 m buffer around this built infrastructure, with ignition points randomly sampled from within this buffer. The third method assumes a Euclidean distance decay of ignition probability around roads and trails up to 1000 m, where the probability of selection linearly decreases further from the transportation paths. The ignition modeling methods were then employed in wildfire simulations with varying wind scenarios representing the climatological wind pattern and strong, downslope wind events. A large number of modeled ignitions were located near the major-exit highway running north–south (HWY 154), resulting in more simulated wildfires burning in that region. This could impact evacuation route planning and resource allocation under climatological wind conditions. The simulated fire areas were smaller, and the wildfires did not spread far from the ignition locations. In contrast, wildfires ignited during strong, northerly winds quickly spread into the wildland–urban interface (WUI) toward suburban and urban areas.more » « less
-
Massive wildfires and extreme fire behavior are becoming more frequent across the western United States, creating a need to better understand how megafire behavior will evolve in our warming world. Here, the fire spread model Prometheus is used to simulate the initial explosive growth of the 2020 August Complex, which occurred in northern California (CA) mixed conifer forests. High temperatures, low relative humidity, and daytime southerly winds were all highly correlated with extreme rates of modeled spread. Fine fuels reached very dry levels, which accelerated simulation growth and heightened fire heat release (HR). Model sensitivity tests indicate that fire growth and HR are most sensitive to aridity and fuel moisture content. Despite the impressive early observed growth of the fire, shifting the simulation ignition to a very dry September 2020 heatwave predicted a >50% increase in growth and HR, as well as increased nighttime fire activity. Detailed model analyses of how extreme fire behavior develops can help fire personnel prepare for problematic ignitions.more » « less
-
Fuel break effectiveness in wildland-urban interface (WUI) is not well understood during downslope wind-driven fires even though various fuel treatments are conducted across the western United States. The aim of this paper is to examine the efficacy of WUI fuel breaks under the influence of strong winds and dry fuels, using the 2018 Camp Fire as a case study. The operational fire growth model Prometheus was used to show: (1) downstream impacts of 200 m and 400 m wide WUI fuel breaks on fire behavior and evacuation time gain; (2) how the downstream fire behavior was affected by the width and fuel conditions of the WUI fuel breaks; and (3) the impacts of background wind speeds on the efficacy of WUI fuel breaks. Our results indicate that WUI fuel breaks may slow wildfire spread rates by dispersing the primary advancing fire front into multiple fronts of lower intensity on the downstream edge of the fuel break. However, fuel break width mattered. We found that the lateral fire spread and burned area were reduced downstream of the 400 m wide WUI fuel break more effectively than the 200 m fuel break. Further sensitivity tests showed that wind speed at the time of ignition influenced fire behavior and efficacy of management interventions.more » « less
-
Extreme, downslope mountain winds often generate dangerous wildfire conditions. We used the wildfire spread model Fire Area Simulator (FARSITE) to simulate two wildfires influenced by strong wind events in Santa Barbara, CA. High spatial-resolution imagery for fuel maps and hourly wind downscaled to 100 m were used as model inputs, and sensitivity tests were performed to evaluate the effects of ignition timing and location on fire spread. Additionally, burn area rasters from FARSITE simulations were compared to minimum travel time rasters from FlamMap simulations, a wildfire model similar to FARSITE that holds environmental variables constant. Utilization of two case studies during strong winds revealed that FARSITE was able to successfully reconstruct the spread rate and size of wildfires when spotting was minimal. However, in situations when spotting was an important factor in rapid downslope wildfire spread, both FARSITE and FlamMap were unable to simulate realistic fire perimeters. We show that this is due to inherent limitations in the models themselves, related to the slope-orientation relative to the simulated fire spread, and the dependence of ember launch and land locations. This finding has widespread implications, given the role of spotting in fire progression during extreme wind events.more » « less
-
null (Ed.)Abstract In the past 40 years, the global annual mean surface temperature has experienced a nonuniform warming, differing from the spatially uniform warming simulated by the forced responses of large multimodel ensembles to anthropogenic forcing. Rather, it exhibits significant asymmetry between the Arctic and Antarctic, with intermittent and spatially varying warming trends along the Northern Hemisphere (NH) midlatitudes and a slight cooling in the tropical eastern Pacific. In particular, this “wavy” pattern of temperature changes over the NH midlatitudes features strong cooling over Eurasia in boreal winter. Here, we show that these nonuniform features of surface temperature changes are likely tied together by tropical eastern Pacific sea surface temperatures (SSTs), via a global atmospheric teleconnection. Using six reanalyses, we find that this teleconnection can be consistently obtained as a leading circulation mode in the past century. This tropically driven teleconnection is associated with a Pacific SST pattern resembling the interdecadal Pacific oscillation (IPO), and hereafter referred to as the IPO-related bipolar teleconnection (IPO-BT). Further, two paleo-reanalysis reconstruction datasets show that the IPO-BT is a robust recurrent mode over the past 400 and 2000 years. The IPO-BT mode may thus serve as an important internal mode that regulates high-latitude climate variability on multidecadal time scales, favoring a warming (cooling) episode in the Arctic accompanied by cooling (warming) over Eurasia and the Southern Ocean (SO). Thus, the spatial nonuniformity of recent surface temperature trends may be partially explained by the enhanced appearance of the IPO-BT mode by a transition of the IPO toward a cooling phase in the eastern Pacific in the past decades.more » « less
-
Abstract The impact of upstream terrain on the diurnal variability of downslope windstorms on the south‐facing slopes of the Santa Ynez Mountains (SYM) is investigated using numerical simulations. These windstorms, called Sundowners due to their typical onset around sunset, have intensified all major wildfires in the area. This study investigates the role of the orography upstream of the SYM in the diurnal behavior of Sundowners. Two types of Sundowners are examined: western sundowners (winds with dominant northwesterly direction) and eastern Sundowners (winds with dominant northeasterly direction). By using semi‐idealized simulations, in which we progressively reduce the upstream terrain, we show that the onset of the lee slope jet occurs in the late afternoon only when the flow approaches the SYM from the northeast, after interacting with a considerably higher mountain barrier. We demonstrate that during the eastern regime, the progressive reduction of the upstream terrain results in strong lee slope winds throughout the day. Conversely, the diurnal cycle of downslope winds during the western regime is less sensitive to the reduction of the upstream terrain. The Sundowner diurnal cycle during the eastern regime can be explained by boundary‐layer processes in the valley and the blocking effect of high mountains upstream of the SYM. These results contribute to a better understanding of the influence of upstream orography in the cycle and intensity of downslope windstorms in coastal mountains.more » « less
-
Abstract Drought conditions significantly impact human and natural systems in the Tropics. Here, multiple observational and reanalysis products and ensembles of simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) are analyzed with respect to drought areal extent over tropical land regions and its past and future relationships to the El Niño/Southern Oscillation (ENSO). CMIP5 models forced with prescribed sea surface temperatures compare well to observations in capturing the present day time evolution of the fraction of tropical land area experiencing drought conditions and the scaling of drought area and ENSO, that is, increasing tropical drought area with increasing ENSO warm phase (El Niño) strength. The ensemble of RCP8.5 simulations suggests lower end‐of‐the‐century El Niño strength‐tropical drought area sensitivity. At least some of this lower sensitivity is attributable to atmosphere‐ocean coupling, as historic coupled model simulations also exhibit lower sensitivity compared to the observations.more » « less
An official website of the United States government
