Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Let $$E$$ be an elliptic curve defined over $${\mathbb{Q}}$$ of conductor $$N$$, $$p$$ an odd prime of good ordinary reduction such that $E[p]$ is an irreducible Galois module, and $$K$$ an imaginary quadratic field with all primes dividing $Np$ split. We prove Iwasawa main conjectures for the $${\mathbb{Z}}_{p}$$-cyclotomic and $${\mathbb{Z}}_{p}$$-anticyclotomic deformations of $$E$$ over $${\mathbb{Q}}$$ and $K,$ respectively, dispensing with any of the ramification hypotheses on $E[p]$ in previous works. The strategy employs base change and the two-variable zeta element associated to $$E$$ over $$K$$, via which the sought after main conjectures are deduced from Wan’s divisibility towards a three-variable main conjecture for $$E$$ over a quartic CM field containing $$K$$ and certain Euler system divisibilities. As an application, we prove cases of the two-variable main conjecture for $$E$$ over $$K$$. The aforementioned one-variable main conjectures imply the $$p$$-part of the conjectural Birch and Swinnerton-Dyer formula for $$E$$ if $$\operatorname{ord}_{s=1}L(E,s)\leq 1$$. They are also an ingredient in the proof of Kolyvagin’s conjecture and its cyclotomic variant in our joint work with Grossi [1].more » « lessFree, publicly-accessible full text available April 1, 2026
-
Let be an elliptic curve and let be an odd prime of good reduction for . Let be an imaginary quadratic field satisfying the classical Heegner hypothesis and in which splits. The goal of this paper is two-fold: (1) we formulate a -adic BSD conjecture for the -adic -function introduced by Bertolini–Darmon–Prasanna [Duke Math. J. 162 (2013), pp. 1033–1148]; and (2) for an algebraic analogue of , we show that the “leading coefficient” part of our conjecture holds, and that the “order of vanishing” part follows from the expected “maximal non-degeneracy” of an anticyclotomic -adic height. In particular, when the Iwasawa–Greenberg Main Conjecture is known, our results determine the leading coefficient of at up to a -adic unit. Moreover, by adapting the approach of Burungale–Castella–Kim [Algebra Number Theory 15 (2021), pp. 1627–1653], we prove the main conjecture for supersingular primes under mild hypotheses. In the -ordinary case, and under some additional hypotheses, similar results were obtained by Agboola–Castella [J. Théor. Nombres Bordeaux 33 (2021), pp 629–658], but our method is new and completely independent from theirs, and apply to all good primes.more » « less
-
Free, publicly-accessible full text available January 1, 2026
-
Résumé Soit $$E/{\mathbb {Q}}$$ E / Q une courbe elliptique à multiplication complexe et p un nombre premier de bonne réduction ordinaire pour E . Nous montrons que si $${\mathrm{corank}}_{{\mathbb {Z}}_p}{\mathrm{Sel}}_{p^\infty }(E/{\mathbb {Q}})=1$$ corank Z p Sel p ∞ ( E / Q ) = 1 , alors E a un point d’ordre infini. Le point de non-torsion provient d’un point de Heegner, et donc $${{{\mathrm{ord}}}}_{s=1}L(E,s)=1$$ ord s = 1 L ( E , s ) = 1 , ce qui donne une réciproque à un théorème de Gross–Zagier, Kolyvagin, et Rubin dans l’esprit de [49, 54]. Pour $$p>3$$ p > 3 , cela donne une nouvelle preuve du résultat principal de [12], que notre approche étend à tous les nombres premiers. L’approche se généralise aux courbes elliptiques à multiplication complexe sur les corps totalement réels [4].more » « less
-
Abstract Let $$E/\mathbf {Q}$$ be an elliptic curve and $p>3$ be a good ordinary prime for E and assume that $L(E,1)=0$ with root number $+1$ (so $$\text {ord}_{s=1}L(E,s)\geqslant 2$$ ). A construction of Darmon–Rotger attaches to E and an auxiliary weight 1 cuspidal eigenform g such that $$L(E,\text {ad}^{0}(g),1)\neq 0$$ , a Selmer class $$\kappa _{p}\in \text {Sel}(\mathbf {Q},V_{p}E)$$ , and they conjectured the equivalence $$ \begin{align*} \kappa_{p}\neq 0\quad\Longleftrightarrow\quad{\textrm{dim}}_{{\mathbf{Q}}_{p}}\textrm{Sel}(\mathbf{Q},V_{p}E)=2. \end{align*} $$ In this article, we prove the first cases on Darmon–Rotger’s conjecture when the auxiliary eigenform g has complex multiplication. In particular, this provides a new construction of nontrivial Selmer classes for elliptic curves of rank 2.more » « less
-
Abstract In this paper, we prove one divisibility of the Iwasawa–Greenberg main conjecture for the Rankin–Selberg product of a weight two cusp form and an ordinary complex multiplication form of higher weight, using congruences between Klingen Eisenstein series and cusp forms on $$\mathrm {GU}(3,1)$$ , generalizing an earlier result of the third-named author to allow nonordinary cusp forms. The main result is a key input in the third-named author’s proof of Kobayashi’s $$\pm $$ -main conjecture for supersingular elliptic curves. The new ingredient here is developing a semiordinary Hida theory along an appropriate smaller weight space and a study of the semiordinary Eisenstein family.more » « less
An official website of the United States government
