- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Chakrabarti, Bhaswar (2)
-
Divan, Ralu (2)
-
Nash, Jawnaye (2)
-
Rosenmann, Daniel (2)
-
Sumant, Anirudha (2)
-
Alkhaldi, Rana (1)
-
Balicas, Luis (1)
-
Garcia, Carlos (1)
-
Karim, Alamgir (1)
-
Kovi, Kiran Kumar (1)
-
McGill, Stephen A. (1)
-
Miller, Christina S. (1)
-
Patil, Prasanna Dnyaneshwar (1)
-
Pradhan, Nihar (1)
-
Pradhan, Nihar Ranjan (1)
-
Raghavan, Dharmaraj (1)
-
Rhodes, Daniel (1)
-
Stan, Liliana (1)
-
Talapatra, Saikat (1)
-
Wasala, Milinda (1)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)A wide variety of two-dimensional (2D) metal dichalcogenide compounds have recently attracted much research interest due to their very high photoresponsivities (R) making them excellent candidates for optoelectronic applications. High R in 2D photoconductors is associated to trap state dynamics leading to a photogating effect, which is often manifested by a fractional power dependence (γ) of the photocurrent (I ph ) when under an effective illumination intensity (P eff ). Here we present photoconductivity studies as a function of gate voltages, over a wide temperature range (20 K to 300 K) of field-effect transistors fabricated using thin layers of mechanically exfoliated rhenium diselenide (ReSe 2 ). We obtain very high responsivities R ~ 16500 A/W and external quantum efficiency (EQE) ~ 3.2 x 10 6 % (at 140 K, V g = 60 V and P eff = 0.2 nW). A strong correlation between R and γ was established by investigating the dependence of these two quantities at various gate voltages and over a wide range of temperature. Such correlations indicate the importance of trap state mediated photogating and its role in promoting high photo responsivities in these materials. We believe such correlations can offer valuable insights for the design and development of high performance photoactive devices using 2D materials.more » « less
-
Pradhan, Nihar; Garcia, Carlos; Chakrabarti, Bhaswar; Nash, Jawnaye; Miller, Christina S.; Raghavan, Dharmaraj; Karim, Alamgir; Stan, Liliana; Divan, Ralu; Rosenmann, Daniel; et al (, Bulletin of the American Physical Society)The Metal-Insulator phase transition (MIT) is one of the most interesting phenomena to study particularly in two-dimensional transition-metal dichalcogendes (TMDCs). A few recent studies1,2 have indicated a possible MIT on MoS2 and ReS2, but the nature of the MIT is still enigmatic due to the interplay between charge carriers and disorder in 2D systems. We will present a potential MIT in few-layered MoSe2 FETs based on four-terminal conductivity measurements. Conductivities measured in multiple samples strongly demonstrate the insulating-to-metallic-like phase transition when the charge carrier density increased above a critical threshold. The nature of the phase transition will be discussed with an existing theoretical model. 1B. H. Moon et al, Nat Commun. 2018; 9: 2052. 2N. R. Pradhan et al, Nano Lett. 2015, 15, 12, 8377 *This work was performed, in part, at the Center for Nanoscale Materials, a U.S. Department of Energy Office of Science User Facility, and supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357. This work is also supported by NSF-DMR #1826886 and # 1900692. A portion of this work was performed at the NHMFL, which is supported by the NSF Cooperative Agreement No. DMR-1644779 and the State of Floridamore » « less
An official website of the United States government

Full Text Available