Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We show thatL-packets of toral supercuspidal representations arising from unramified maximal tori ofp-adic groups are realized by Deligne–Lusztig varieties for parahoric subgroups. We prove this by exhibiting a direct comparison between the cohomology of these varieties and algebraic constructions of supercuspidal representations. Our approach is to establish that toral irreducible representations are uniquely determined by the values of their characters on a domain of sufficiently regular elements. This is an analogue of Harish-Chandra’s characterization of real discrete series representations by their characters on regular elements of compact maximal tori, a characterization which Langlands relied on in his construction ofL-packets of these representations. In parallel to the real case, we characterize the members of Kaletha’s toralL-packets by their characters on sufficiently regular elements of elliptic maximal tori.more » « lessFree, publicly-accessible full text available March 7, 2026
-
We give a geometric construction of representations of parahoric subgroups P P of a reductive group G G over a local field which splits over an unramified extension. These representations correspond to characters θ \theta of unramified maximal tori and, when the torus is elliptic, are expected to give rise to supercuspidal representations of G G . We calculate the character of these P P -representations on a special class of regular semisimple elements of G G . Under a certain regularity condition on θ \theta , we prove that the associated P P -representations are irreducible. This generalizes a construction of Lusztig from the hyperspecial case to the setting of an arbitrary parahoric.more » « less
-
Abstract We prove a 1979 conjecture of Lusztig on the cohomology of semi-infinite Deligne–Lusztig varieties attached to division algebras over local fields. We also prove the two conjectures of Boyarchenko on these varieties. It is known that in this setting, the semi-infinite Deligne–Lusztig varieties are ind-schemes comprised of limits of certain finite-type schemes X h {X_{h}} . Boyarchenko’s two conjectures are on the maximality of X h {X_{h}} and on the behavior of the torus-eigenspaces of their cohomology. Both of these conjectures were known in full generality only for division algebras with Hasse invariant 1 / n {1/n} in the case h = 2 {h=2} (the “lowest level”) by the work of Boyarchenko–Weinstein on the cohomology of a special affinoid in the Lubin–Tate tower. We prove that the number of rational points of X h {X_{h}} attains its Weil–Deligne bound, so that the cohomology of X h {X_{h}} is pure in a very strong sense. We prove that the torus-eigenspaces of the cohomology group H c i ( X h ) {H_{c}^{i}(X_{h})} are irreducible representations and are supported in exactly one cohomological degree. Finally, we give a complete description of the homology groups of the semi-infinite Deligne–Lusztig varieties attached to any division algebra, thus giving a geometric realization of a large class of supercuspidal representations of these groups. Moreover, the correspondence θ ↦ H c i ( X h ) [ θ ] {\theta\mapsto H_{c}^{i}(X_{h})[\theta]} agrees with local Langlands and Jacquet–Langlands correspondences. The techniques developed in this paper should be useful in studying these constructions for p -adic groups in general.more » « less
-
Waldspurger’s formula gives an identity between the norm of a torus period and an $$L$$ -function of the twist of an automorphic representation on GL(2). For any two Hecke characters of a fixed quadratic extension, one can consider the two torus periods coming from integrating one character against the automorphic induction of the other. Because the corresponding $$L$$ -functions agree, (the norms of) these periods—which occur on different quaternion algebras—are closely related. In this paper, we give a direct proof of an explicit identity between the torus periods themselves.more » « less
An official website of the United States government
