Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available March 1, 2026
-
Free, publicly-accessible full text available August 25, 2025
-
Gradient coding is a method for mitigating straggling servers in a centralized computing network that uses erasure-coding techniques to distributively carry out first-order optimization methods. Randomized numerical linear algebra uses randomization to develop improved algorithms for large-scale linear algebra computations. In this paper, we propose a method for distributed optimization that combines gradient coding and randomized numerical linear algebra. The proposed method uses a randomized ℓ2 -subspace embedding and a gradient coding technique to distribute blocks of data to the computational nodes of a centralized network, and at each iteration the central server only requires a small number of computations to obtain the steepest descent update. The novelty of our approach is that the data is replicated according to importance scores, called block leverage scores, in contrast to most gradient coding approaches that uniformly replicate the data blocks. Furthermore, we do not require a decoding step at each iteration, avoiding a bottleneck in previous gradient coding schemes. We show that our approach results in a valid ℓ2 -subspace embedding, and that our resulting approximation converges to the optimal solution.more » « lessFree, publicly-accessible full text available September 1, 2025
-
null (Ed.)A cumbersome operation in numerical analysis and linear algebra, optimization, machine learning and engineering algorithms; is inverting large full-rank matrices which appears in various processes and applications [1]. This has both numerical stability and complexity issues, as well as high expected time to compute. We address the latter issue, by proposing an algorithm which uses a black-box least squares optimization solver as a subroutine, to give an estimate of the inverse (and pseudoinverse) of real nonsingular matrices; by estimating its columns. This also gives it the flexibility to be performed in a distributed manner, thus the estimate can be obtained a lot faster, and can be made robust to stragglers. Furthermore, we assume a centralized network with no message passing between the computing nodes, and do not require a matrix factorization; e.g. LU, SVD or QR decomposition beforehand.more » « less