skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Chen, Fan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 6, 2026
  2. Free, publicly-accessible full text available February 1, 2026
  3. Free, publicly-accessible full text available September 29, 2025
  4. Free, publicly-accessible full text available November 1, 2025
  5. Free, publicly-accessible full text available December 1, 2025
  6. Free, publicly-accessible full text available July 1, 2025
  7. Trapped-Ion (TI) technology offers potential breakthroughs for Noisy Intermediate Scale Quantum (NISQ) computing. TI qubits offer extended coherence times and high gate fidelity, making them appealing for large-scale NISQ computers. Constructing such computers demands a distributed architecture connecting Quantum Charge Coupled Devices (QCCDs) via quantum matter-links and photonic switches. However, current distributed TI NISQ computers face hardware and system challenges. Entangling qubits across a photonic switch introduces significant latency, while existing compilers generate suboptimal mappings due to their unawareness of the interconnection topology. In this paper, we introduce TITAN, a large-scale distributed TI NISQ computer, which employs an innovative photonic interconnection design to reduce entanglement latency and an advanced partitioning and mapping algorithm to optimize matter-link communications. Our evaluations show that TITAN greatly enhances quantum application performance by 56.6% and fidelity by 19.7% compared to existing systems. 
    more » « less
  8. The carbon footprint associated with large language models (LLMs) is a significant concern, encompassing emissions from their training, inference, experimentation, and storage processes, including operational and embodied carbon emissions. An essential aspect is accurately estimating the carbon impact of emerging LLMs even before their training, which heavily relies on GPU usage. Existing studies have reported the carbon footprint of LLM training, but only one tool, mlco2, can predict the carbon footprint of new neural networks prior to physical training. However, mlco2 has several serious limitations. It cannot extend its estimation to dense or mixture-of-experts (MoE) LLMs, disregards critical architectural parameters, focuses solely on GPUs, and cannot model embodied carbon footprints. Addressing these gaps, we introduce \textit{\carb}, an end-to-end carbon footprint projection model designed for both dense and MoE LLMs. Compared to mlco2, \carb~significantly enhances the accuracy of carbon footprint estimations for various LLMs. The source code is released at \url{https://github.com/SotaroKaneda/MLCarbon}. 
    more » « less