Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 24, 2025
-
Abstract Bipolar organic materials have emerged as promising cathode materials for rechargeable batteries because of their high voltage and high capacity. However, they suffer from poor cyclic stability and slow reaction kinetics. In this work, we designed and synthesized two bipolar organic cathode materials, containing carbonyl (n‐type) and amine (p‐type) functional groups, as well as extended conjugation structures, for Na‐ion batteries (NIBs) and rechargeable aluminum batteries (RABs). As universal electrode materials, bipolar organic materials exhibited exceptional electrochemical performance in terms of high capacity, high voltage, long cycle life, and fast rate capability. The extended conjugation structures in backbones of the bipolar organic materials facilitate the π–π stacking with graphene, playing a critical role in the high performance. Furthermore, the formation of a stable and robust NaF‐rich cathode electrolyte interphase was shown to stabilize the bipolar organic cathode in NIBs. Electrochemical kinetic measurements reveal that both functional groups undergo reversible redox reactions. Specifically, the electron transfer rate constant of the p‐type amine group is one order of magnitude higher than that of the n‐type carbonyl group. These results highlight the efficacy of developing bipolar organic materials for achieving high‐performance organic cathode in NIBs and RABs.
-
Controlling network growth and architecture of 3D-conjugated porous polymers (CPPs) is challenging and therefore has limited the ability to systematically tune the network architecture and study its impact on doping efficiency and conductivity. We have proposed that π-face masking straps mask the π-face of the polymer backbone and therefore help to control π–π interchain interactions in higher dimensional π-conjugated materials unlike the conventional linear alkyl pendant solubilizing chains that are incapable of masking the π-face. Herein, we used cycloaraliphane-based π-face masking strapped monomers and show that the strapped repeat units, unlike the conventional monomers, help to overcome the strong interchain π–π interactions, extend network residence time, tune network growth, and increase chemical doping and conductivity in 3D-conjugated porous polymers. The straps doubled the network crosslinking density, which resulted in 18 times higher chemical doping efficiency compared to the control non-strapped-CPP. The straps also provided synthetic tunability and generated CPPs of varying network size, crosslinking density, dispersibility limit, and chemical doping efficiency by changing the knot to strut ratio. For the first time, we have shown that the processability issue of CPPs can be overcome by blending them with insulating commodity polymers. The blending of CPPs with poly(methylmethacrylate) (PMMA) has enabled them to be processed into thin films for conductivity measurements. The conductivity of strapped-CPPs is three orders of magnitude higher than that of the poly(phenyleneethynylene) porous network.
-
Abstract Octreotide acetate, the active pharmaceutical ingredient in the long‐acting release (LAR) drug product Sandostatin®, is a cyclic octapeptide that mimics the naturally occurring somatostatin peptide hormone. Modern NMR can be a robust analytical method to identify and quantify octreotide molecules. Previous1H chemical shift assignments were mostly performed in organic solvents, and no assignments for heteronuclear13C,15N, and aromatic1H nuclei are available. Here, using state‐of‐the‐art 1D and 2D homo‐ and heteronuclear NMR experiments, octreotide was fully assigned, including water exchangeable amide protons, in aqueous buffer except for13CO and15NH of F1,15NH of C2, and15N
ζ Hζ of K5 that were not observed because of water exchange or conformational exchange. The solution NMR spectra were then directly compared with 1D1H/13C/15N solid‐state NMR (SSNMR) spectra showing the potential applicability of13C/15N SSNMR for octreotide drug product characterization. -
Abstract Redox‐active polymers (RAPs) are promising organic electrode materials for affordable and sustainable batteries due to their flexible chemical structures and negligible solubility in the electrolyte. Developing high‐dimensional RAPs with porous structures and crosslinkers can further improve their stability and redox capability by reducing the solubility and enhancing reaction kinetics. This work reports two three‐dimensional (3D) RAPs as stable organic cathodes in Na‐ion batteries (NIBs) and K‐ion batteries (KIBs). Carbonyl functional groups are incorporated into the repeating units of the RAPs by the polycondensation of Tetrakis(4‐aminophenyl)methane and two different dianhydrides. The RAPs with interconnected 3D extended conjugation structures undergo multi‐electron redox reactions and exhibit high performance in both NIBs and KIBs in terms of long cycle life (up to 8000 cycles) and fast charging capability (up to 2 A g−1). The results demonstrate that developing 3D RAPs is an effective strategy to achieve high‐performance, affordable, and sustainable NIBs and KIBs.
-
null (Ed.)Abstract In the human neocortex coherent interlaminar theta oscillations are driven by deep cortical layers, suggesting neurons in these layers exhibit distinct electrophysiological properties. To characterize this potential distinctiveness, we use in vitro whole-cell recordings from cortical layers 2 and 3 (L2&3), layer 3c (L3c) and layer 5 (L5) of the human cortex. Across all layers we observe notable heterogeneity, indicating human cortical pyramidal neurons are an electrophysiologically diverse population. L5 pyramidal cells are the most excitable of these neurons and exhibit the most prominent sag current (abolished by blockade of the hyperpolarization activated cation current, I h ). While subthreshold resonance is more common in L3c and L5, we rarely observe this resonance at frequencies greater than 2 Hz. However, the frequency dependent gain of L5 neurons reveals they are most adept at tracking both delta and theta frequency inputs, a unique feature that may indirectly be important for the generation of cortical theta oscillations.more » « less
-
Abstract Sulfurized polyacrylonitrile (SPAN) recently emerges as a promising cathode for high‐energy lithium (Li) metal batteries owing to its high capacity, extended cycle life, and liberty from costly transition metals. As the high capacities of both Li metal and SPAN lead to relatively small electrode weights, the weight and specific energy density of Li/SPAN batteries are particularly sensitive to electrolyte weight, highlighting the importance of minimizing electrolyte density. Besides, the large volume changes of Li metal anode and SPAN cathode require inorganic‐rich interphases that can guarantee intactness and protectivity throughout long cycles. This work addresses these crucial aspects with an electrolyte design where lightweight dibutyl ether (DBE) is used as a diluent for concentrated lithium bis(fluorosulfonyl)imide (LiFSI)‐triethyl phosphate (TEP) solution. The designed electrolyte (
d = 1.04 g mL−1) is 40%–50% lighter than conventional localized high‐concentration electrolytes (LHCEs), leading to 12%–20% extra energy density at the cell level. Besides, the use of DBE introduces substantial solvent‐diluent affinity, resulting in a unique solvation structure with strengthened capability to form favorable anion‐derived inorganic‐rich interphases, minimize electrolyte consumption, and improve cell cyclability. The electrolyte also exhibits low volatility and offers good protection to both Li metal anode and SPAN cathode under thermal abuse.