skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Search for: All records

Creators/Authors contains: "Chen, Jou-An"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Data redundancy is ubiquitous in the inputs and intermediate results of Deep Neural Networks (DNN) . It offers many significant opportunities for improving DNN performance and efficiency and has been explored in a large body of work. These studies have scattered in many venues across several years. The targets they focus on range from images to videos and texts, and the techniques they use to detect and exploit data redundancy also vary in many aspects. There is not yet a systematic examination and summary of the many efforts, making it difficult for researchers to get a comprehensive view of the prior work, the state of the art, differences and shared principles, and the areas and directions yet to explore. This article tries to fill the void. It surveys hundreds of recent papers on the topic, introduces a novel taxonomy to put the various techniques into a single categorization framework, offers a comprehensive description of the main methods used for exploiting data redundancy in improving multiple kinds of DNNs on data, and points out a set of research opportunities for future exploration. 
    more » « less
  2. As more apps embrace AI, it is becoming increasingly common that multiple Deep Neural Networks (DNN)-powered apps may run at the same time on a mobile device. This paper explores scheduling in such multi-instance DNN scenarios, on general open mobile systems (e.g., common smartphones and tablets). Unlike closed systems (e.g., autonomous driving systems) where the set of co-run apps is known beforehand, the user of an open mobile system may install or uninstall arbitrary apps at any time, and a centralized solution is subject to adoption barriers. This work proposes the first-known decentralized application-level scheduling mechanism to address the problem. By leveraging the adaptivity of Deep Reinforcement Learning, the solution is shown to make the scheduling of co-run apps converge to a Nash equilibrium point, yielding a good balance of gains among the apps. The solution moreover automatically adapts to the running environment and the underlying OS and hardware. Experiments show that the solution consistently produces significant speedups and energy savings across DNN workloads, hardware configurations, and running scenarios. 
    more » « less
  3. null (Ed.)