skip to main content

Search for: All records

Creators/Authors contains: "Chen, Qin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Pattern formation in plasma–solid interaction represents a great research challenge in many applications from plasma etching to surface treatment, whereby plasma attachments on electrodes (arc roots) are constricted to self-organized spots. Gliding arc discharge in a Jacob’s Ladder, exhibiting hopping dynamics, provides a unique window to probe the nature of pattern formation in plasma–surface interactions. In this work, we find that the existence of negative differential resistance (NDR) across the sheath is responsible for the observed hopping pattern. Due to NDR, the current density and potential drop behave as activator and inhibitor, the dynamic interactions of which govern the surface current density re-distribution and the formation of structured spots. In gliding arc discharges, new arc roots can form separately in front of the existing root(s), which happens periodically to constitute the stepwise hopping. From the instability phase-diagram analysis, the phenomenon that arc attachments tend to constrict itself spontaneously in the NDR regime is well explained. Furthermore, we demonstrate via a comprehensive magnetohydrodynamics (MHD) computation that the existence of a sheath NDR can successfully reproduce the arc hopping as observed in experiments. Therefore, this work uncovers the essential role of sheath NDR in the plasma–solid surface pattern formation and opensmore »up a hitherto unexplored area of research for manipulating the plasma–solid interactions.

    « less
  2. The Rockefeller Wildlife Refuge, located along the Chenier Plain in Southwest Louisiana, was the location of the sequential landfall of two major hurricanes in the 2020 hurricane season. To protect the rapidly retreating coastline along the Refuge, a system of breakwaters was constructed, which was partially completed by the 2020 hurricane season. Multi-institutional, multi-disciplinary rapid response deployments of wave gauges, piezometers, geotechnical measurements, vegetation sampling, and drone surveys were conducted before and after Hurricanes Laura and Delta along two transects in the Refuge; one protected by a breakwater system and one which was the natural, unprotected shoreline. Geomorphological changes were similar on both transects after Hurricane Laura, while after Delta there was higher inland sediment deposition on the natural shoreline. Floodwaters drained from the transect with breakwater protection more slowly than the natural shoreline, though topography profiles are similar, indicating a potential dampening or complex hydrodynamic interactions between the sediment—wetland—breakwater system. In addition, observations of a fluidized mud deposit in Rollover Bayou in the Refuge are presented and discussed in context of the maintenance of wetland elevation and stability in the sediment starved Chenier Plain.
    Free, publicly-accessible full text available April 27, 2023
  3. We adapted the coupled ocean-sediment transport model to the northern Gulf of Mexico to examine sediment dynamics on seasonal-to-decadal time scales as well as its response to decreased fluvial inputs from the Mississippi-Atchafalaya River. Sediment transport on the shelf exhibited contrasting conditions in a year, with strong westward transport in spring, fall, and winter, and relatively weak eastward transport in summer. Sedimentation rate varied from almost zero on the open shelf to more than 10 cm/year near river mouths. A phase shift in river discharge was detected in 1999 and was associated with the El Niño-Southern Oscillation (ENSO) event, after which, water and sediment fluxes decreased by ~20% and ~40%, respectively. Two sensitivity tests were carried out to examine the response of sediment dynamics to high and low river discharge, respectively. With a decreased fluvial supply, sediment flux and sedimentation rate were largely reduced in areas proximal to the deltas, which might accelerate the land loss in down-coast bays and estuaries. The results of two sensitivity tests indicated the decreased river discharge would largely affect sediment balance in waters around the delta. The impact from decreased fluvial input was minimum on the sandy shoals ~100 km west of the Mississippimore »Delta, where deposition of fluvial sediments was highly affected by winds.« less