skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, Rex"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 29, 2025
  2. Privacy policies are often lengthy and complex legal documents, and are difficult for many people to read and comprehend. Recent research efforts have explored automated assistants that process the language in policies and answer people’s privacy questions. This study documents the importance of two different types of reasoning necessary to generate accurate answers to people’s privacy questions. The first is the need to support taxonomic reasoning about related terms commonly found in privacy policies. The second is the need to reason about regulatory disclosure requirements, given the prevalence of silence in privacy policy texts. Specifically, we report on a study involving the collection of 749 sets of expert annotations to answer privacy questions in the context of 210 different policy/question pairs. The study highlights the importance of taxonomic reasoning and of reasoning about regulatory disclosure requirements when it comes to accurately answering everyday privacy questions. Next we explore to what extent current generative AI tools are able to reliably handle this type of reasoning. Our results suggest that in their current form and in the absence of additional help, current models cannot reliably support the type of reasoning about regulatory disclosure requirements necessary to accurately answer privacy questions. We proceed to introduce and evaluate different approaches to improving their performance. Through this work, we aim to provide a richer understanding of the capabilities automated systems need to have to provide accurate answers to everyday privacy questions and, in the process, outline paths for adapting AI models for this purpose. 
    more » « less
    Free, publicly-accessible full text available November 29, 2025
  3. Understanding and managing data privacy in the digital world can be challenging for sighted users, let alone blind and lowvision (BLV) users. There is limited research on how BLV users, who have special accessibility needs, navigate data privacy, and how potential privacy tools could assist them. We conducted an in-depth qualitative study with 21 US BLV participants to understand their data privacy risk perception and mitigation, as well as their information behaviors related to data privacy. We also explored BLV users’ attitudes towards potential privacy question answering (Q&A) assistants that enable them to better navigate data privacy information. We found that BLV users face heightened security and privacy risks, but their risk mitigation is often insufficient. They do not necessarily seek data privacy information but clearly recognize the benefits of a potential privacy Q&A assistant. They also expect privacy Q&A assistants to possess cross-platform compatibility, support multi-modality, and demonstrate robust functionality. Our study sheds light on BLV users’ expectations when it comes to usability, accessibility, trust and equity issues regarding digital data privacy. 
    more » « less
  4. This repository archives the supplemental materials for the USENIX Security '24 paper of the same title. 
    more » « less
  5. Over the past decade, researchers have started to explore the use of NLP to develop tools aimed at helping the public, vendors, and regulators analyze disclosures made in privacy policies. With the introduction of new privacy regulations, the language of privacy policies is also evolving, and disclosures made by the same organization are not always the same in different languages, especially when used to communicate with users who fall under different jurisdictions. This work explores the use of language technologies to capture and analyze these differences at scale. We introduce an annotation scheme designed to capture the nuances of two new landmark privacy regulations, namely the EU’s GDPR and California’s CCPA/CPRA. We then introduce the first bilingual corpus of mobile app privacy policies consisting of 64 privacy policies in English (292K words) and 91 privacy policies in German (478K words), respectively with manual annotations for 8K and 19K fine-grained data practices. The annotations are used to develop computational methods that can automatically extract “disclosures” from privacy policies. Analysis of a subset of 59 “semi-parallel” policies reveals differences that can be attributed to different regulatory regimes, suggesting that systematic analysis of policies using automated language technologies is indeed a worthwhile endeavor. 
    more » « less