skip to main content


Search for: All records

Creators/Authors contains: "Cheng, Dehua"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2024
  2. The rise of deep neural networks offers new opportunities in optimizing recommender systems. However, optimizing recommender systems using deep neural networks requires delicate architecture fabrication. We propose NASRec, a paradigm that trains a single supernet and efficiently produces abundant models/sub-architectures by weight sharing. To overcome the data multi-modality and architecture heterogeneity challenges in the recommendation domain, NASRec establishes a large supernet (i.e., search space) to search the full architectures. The supernet incorporates versatile choice of operators and dense connectivity to minimize human efforts for finding priors. The scale and heterogeneity in NASRec impose several challenges, such as training inefficiency, operator-imbalance, and degraded rank correlation. We tackle these challenges by proposing single-operator any-connection sampling, operator-balancing interaction modules, and post-training fine-tuning. Our crafted models, NASRecNet, show promising results on three Click-Through Rates (CTR) prediction benchmarks, indicating that NASRec outperforms both manually designed models and existing NAS methods with state-of-the-art performance. Our work is publicly available here. 
    more » « less
    Free, publicly-accessible full text available April 30, 2024
  3. We propose a stochastic variational inference algorithm for training large-scale Bayesian networks, where noisy-OR conditional distributions are used to capture higher-order relationships. One application is to the learning of hierarchical topic models for text data. While previous work has focused on two-layer networks popular in applications like medical diagnosis, we develop scalable algorithms for deep networks that capture a multi-level hierarchy of interactions. Our key innovation is a family of constrained variational bounds that only explicitly optimize posterior probabilities for the sub-graph of topics most related to the sparse observations in a given document. These constrained bounds have comparable accuracy but dramatically reduced computational cost. Using stochastic gradient updates based on our variational bounds, we learn noisy-OR Bayesian networks orders of magnitude faster than was possible with prior Monte Carlo learning algorithms, and provide a new tool for understanding large-scale binary data. 
    more » « less