skip to main content

Search for: All records

Creators/Authors contains: "Cheng, Hao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Modern microprocessor performance is limited by local hot spots induced at high frequency by busy integrated circuit elements such as the clock generator. Locally embedded thermoelectric devices (TEDs) are proposed to perform active cooling whereby thermoelectric effects enhance passive cooling by the Fourier law in removing heat from the hot spot to colder regions. To mitigate transient heating events and improve temperature stability, we propose a novel analytical solution that describes the temperature response of a periodically heated hot spot that is actively cooled by a TED driven electrically at the same frequency. The analytical solution that we present is validated by experimental data from frequency domain thermal reflectance (FDTR) measurements made directly on an actively cooled Si thermoelectric device where the pump laser replicates the transient hot spot. We herein demonstrate a practical method to actively cancel the transient temperature variations on circuit elements with TEDs. This result opens a new path to optimize the design of cooling systems for transient localized hot spots in integrated circuits.

    more » « less
  2. Free, publicly-accessible full text available February 13, 2025
  3. The noise transition matrix plays a central role in the problem of learning with noisy labels. Among many other reasons, a large number of existing solutions rely on access to it. Identifying and estimating the transition matrix without ground truth labels is a critical and challenging task. When label noise transition depends on each instance, the problem of identifying the instance-dependent noise transition matrix becomes substantially more challenging. Despite recent works proposing solutions for learning from instance-dependent noisy labels, the field lacks a unified understanding of when such a problem remains identifiable. The goal of this paper is to characterize the identifiability of the label noise transition matrix. Building on Kruskal's identifiability results, we are able to show the necessity of multiple noisy labels in identifying the noise transition matrix for the generic case at the instance level. We further instantiate the results to explain the successes of the state-of-the-art solutions and how additional assumptions alleviated the requirement of multiple noisy labels. Our result also reveals that disentangled features are helpful in the above identification task and we provide empirical evidence. 
    more » « less
    Free, publicly-accessible full text available July 24, 2024
  4. Intermediate features of a pre-trained model have been shown informative for making accurate predictions on downstream tasks, even if the model backbone is kept frozen. The key challenge is how to utilize these intermediate fea- tures given their gigantic amount. We propose visual query tuning (VQT), a simple yet effective approach to aggregate intermediate features of Vision Transformers. Through in- troducing a handful of learnable “query” tokens to each layer, VQT leverages the inner workings of Transformers to “summarize” rich intermediate features of each layer, which can then be used to train the prediction heads of downstream tasks. As VQT keeps the intermediate features intact and only learns to combine them, it enjoys memory efficiency in training, compared to many other parameter- efficient fine-tuning approaches that learn to adapt features and need back-propagation through the entire backbone. This also suggests the complementary role between VQT and those approaches in transfer learning. Empirically, VQT consistently surpasses the state-of-the-art approach that utilizes intermediate features for transfer learning and outperforms full fine-tuning in many cases. Compared to parameter-efficient approaches that adapt features, VQT achieves much higher accuracy under memory constraints. Most importantly, VQT is compatible with these approaches to attain even higher accuracy, making it a simple add- on to further boost transfer learning. Code is available at . 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  5. Fractals are geometric shapes that can display complex and self-similar patterns found in nature (e.g., clouds and plants). Recent works in visual recognition have leveraged this property to create random fractal images for model pre-training. In this paper, we study the inverse problem --- given a target image (not necessarily a fractal), we aim to generate a fractal image that looks like it. We propose a novel approach that learns the parameters underlying a fractal image via gradient descent. We show that our approach can find fractal parameters of high visual quality and be compatible with different loss functions, opening up several potentials, e.g., learning fractals for downstream tasks, scientific understanding, etc. 
    more » « less
    Free, publicly-accessible full text available June 27, 2024
  6. Free, publicly-accessible full text available June 1, 2024
  7. Free, publicly-accessible full text available June 1, 2024
  8. Abstract In an information-seeking conversation, a user may ask questions that are under-specified or unanswerable. An ideal agent would interact by initiating different response types according to the available knowledge sources. However, most current studies either fail to or artificially incorporate such agent-side initiative. This work presents InSCIt, a dataset for Information-Seeking Conversations with mixed-initiative Interactions. It contains 4.7K user-agent turns from 805 human-human conversations where the agent searches over Wikipedia and either directly answers, asks for clarification, or provides relevant information to address user queries. The data supports two subtasks, evidence passage identification and response generation, as well as a human evaluation protocol to assess model performance. We report results of two systems based on state-of-the-art models of conversational knowledge identification and open-domain question answering. Both systems significantly underperform humans, suggesting ample room for improvement in future studies.1 
    more » « less
  9. Designing robust loss functions is popular in learning with noisy labels while existing designs did not explicitly consider the overfitting property of deep neural networks (DNNs). As a result, applying these losses may still suffer from overfitting/memorizing noisy labels as training proceeds. In this paper, we first theoretically analyze the memorization effect and show that a lower-capacity model may perform better on noisy datasets. However, it is non-trivial to design a neural network with the best capacity given an arbitrary task. To circumvent this dilemma, instead of changing the model architecture, we decouple DNNs into an encoder followed by a linear classifier and propose to restrict the function space of a DNN by a representation regularizer. Particularly, we require the distance between two self-supervised features to be positively related to the distance between the corresponding two supervised model outputs. Our proposed framework is easily extendable and can incorporate many other robust loss functions to further improve performance. Extensive experiments and theoretical analyses support our claims. Code is available at 
    more » « less