skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Cheng, Peifu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Monolayer graphene growth on liquid copper (Cu) has attracted attention due to advantages of a flat/smooth catalytic growth surface, high synthesis temperature (>1080 °C) as well as the possibility of forming graphene domains that are mobile on the liquid Cu with potential to minimize grain boundary defects and self-assemble into a continuous monolayer film. However, the quality of monolayer graphene grown on liquid copper and its suitability for size-selective ionic/molecular membrane separations has not been evaluated/studied. Here, we probe the quality of monolayer graphene grown on liquid Cu (via a metallurgical process, HSMG®) using Scanning Electron Microscope (SEM), High-resolution transmission electron microscope (HR-TEM), Raman spectroscopy and report on a facile approach to assess intrinsic sub-nanometer to nanometer-scale defects over centimeter-scale areas. We demonstrate high transfer yields of monolayer graphene (>93% coverage) from the growth substrate to polyimide track etched membrane (PITEM, pore diameter ∼200 nm) supports to form centimeter-scale atomically thin membranes. Next, we use pressure-driven transport of ethanol to probe defects > 60 nm and diffusion-driven transport of analytes (KCl ∼0.66 nm, L-Tryptophan ∼0.7–0.9 nm, Vitamin B12 ∼1–1.5 nm and Lysozyme ∼3.8–4 nm) to probe nanoscale and sub-nanometer scale defects. Diffusive transport confirms the presence of intrinsic sub-nanometer to nanometer scale defects in monolayer graphene grown on liquid Cu are no less than that in high-quality graphene synthesized via chemical vapor deposition (CVD) on solid Cu. Our work not only benchmarks quality of graphene grown on liquid copper for membrane applications but also provides fundamental insights into the origin of intrinsic defects in large-area graphene synthesized via bottom-up processes for membrane applications. 
    more » « less
  2. Abstract The transport of water through nanoscale capillaries/pores plays a prominent role in biology, ionic/molecular separations, water treatment and protective applications. However, the mechanisms of water and vapor transport through nanoscale confinements remain to be fully understood. Angstrom-scale pores (~2.8–6.6 Å) introduced into the atomically thin graphene lattice represent ideal model systems to probe water transport at the molecular-length scale with short pores (aspect ratio ~1–1.9) i.e., pore diameters approach the pore length (~3.4 Å) at the theoretical limit of material thickness. Here, we report on orders of magnitude differences (~80×) between transport of water vapor (~44.2–52.4 g m −2 day −1 Pa −1 ) and liquid water (0.6–2 g m −2 day −1 Pa −1 ) through nanopores (~2.8–6.6 Å in diameter) in monolayer graphene and rationalize this difference via a flow resistance model in which liquid water permeation occurs near the continuum regime whereas water vapor transport occurs in the free molecular flow regime. We demonstrate centimeter-scale atomically thin graphene membranes with up to an order of magnitude higher water vapor transport rate (~5.4–6.1 × 10 4  g m −2 day −1 ) than most commercially available ultra-breathable protective materials while effectively blocking even sub-nanometer (>0.66 nm) model ions/molecules. 
    more » « less
  3. Selective proton (H + ) permeation through the atomically thin lattice of graphene and other 2D materials offers new opportunities for energy conversion/storage and novel separations. Practical applications necessitate scalable synthesis via approaches such as chemical vapor deposition (CVD) that inevitably introduce sub-nanometer defects, grain boundaries and wrinkles, and understanding their influence on H + transport and selectivity for large-area membranes is imperative but remains elusive. Using electrically driven transport of H + and potassium ions (K + ) we probe the influence of intrinsic sub-nanometer defects in monolayer CVD graphene across length-scales for the first time. At the micron scale, the areal H + conductance of CVD graphene (∼4.5–6 mS cm −2 ) is comparable to that of mechanically exfoliated graphene indicating similarly high crystalline quality within a domain, albeit with K + transport (∼1.7 mS cm −2 ). However, centimeter-scale Nafion|graphene|Nafion devices with several graphene domains show areal H + conductance of ∼339 mS cm −2 and K + conductance of ∼23.8 mS cm −2 (graphene conductance for H + is ∼1735 mS cm −2 and for K + it is ∼47.6 mS cm −2 ). Using a mathematical-transport-model and Nafion filled polycarbonate track etched supports, we systematically deconstruct the observed orders of magnitude increase in H + conductance for centimeter-scale CVD graphene. The mitigation of defects (>1.6 nm), wrinkles and tears via interfacial polymerization results in a conductance of ∼1848 mS cm −2 for H + and ∼75.3 mS cm −2 for K + (H + /K + selectivity of ∼24.5) via intrinsic sub-nanometer proton selective defects in CVD graphene. We demonstrate atomically thin membranes with significantly higher ionic selectivity than state-of-the-art proton exchange membranes while maintaining comparable H + conductance. Our work provides a new framework to assess H + conductance and selectivity of large-area 2D membranes and highlights the role of intrinsic sub-nanometer proton selective defects for practical applications. 
    more » « less
  4. null (Ed.)
    Scalable graphene synthesis and facile large-area membrane fabrication are imperative to advance nanoporous atomically thin membranes (NATMs) for molecular separations. Although chemical vapor deposition (CVD) allows for roll-to-roll high-quality monolayer graphene synthesis, facile transfer with atomically clean interfaces to porous supports for large-area NATM fabrication remains extremely challenging. Sacrificial polymer scaffolds commonly used for graphene transfer typically leave polymer residues detrimental to membrane performance and transfers without polymer scaffolds suffer from low yield resulting in high non-selective leakage through NATMs. Here, we systematically study the factors influencing graphene NATM fabrication and report on a novel roll-to-roll manufacturing compatible isopropanol-assisted hot lamination (IHL) process that enables scalable, facile and clean transfer of CVD graphene on to polycarbonate track etched (PCTE) supports with coverage ≥99.2%, while preserving support integrity/porosity. We demonstrate fully functional centimeter-scale graphene NATMs that show record high permeances (∼2–3 orders of magnitude higher) and better selectivity than commercially available state-of-the-art polymeric dialysis membranes, specifically in the 0–1000 Da range. Our work highlights a scalable approach to fabricate graphene NATMs for practical applications and is fully compatible with roll-to-roll manufacturing processes. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
  7. Abstract Conventional dialyzer membranes typically comprise of unevenly distributed polydisperse, tortuous, rough pores, embedded in relatively thick ≈20–50 µm polymer layers wherein separation occurs via size exclusion as well as differences in diffusivity of the permeating species. However, transport in such polymeric pores is increasingly hindered as the molecule size approaches the pore dimension, resulting in significant retention of undesirable middle molecules (≥15–60 kDa) and uremic toxins. Enhanced removal of middle molecules is usually accompanied by high albumin loss (≈66 kDa) causing hypoalbuminemia. Here, the scalable bottom‐up fabrication of wafer‐scale carbon nanotube (CNT) membranes with highly aligned, low‐friction, straight‐channels/capillaries and narrow pore‐diameter distributions (≈0.5–4.5 nm) is demonstrated, to overcome persistent challenges in hemofiltration/hemodialysis. Using fluorescein isothiocyanate (FITC)‐Ficoll 70 and albumin in phosphate buffered saline (PBS) as well as in bovine blood plasma, it is shown that CNT membranes can allow for significantly higher hydraulic permeability (more than an order of magnitude when normalized to pore area) than commercial high‐flux hemofiltration/hemodialysis membranes (HF 400), as well as greatly enhance removal of middle molecules while maintaining comparable albumin retention. These findings are rationalized via an N‐pore transport model that highlights the critical role of molecular flexing and deformation during size‐selective transport within nanoscale confinements of the CNTs. The unique transport characteristics of CNTs coupled with size‐exclusion and wafer‐scale fabrication offer transformative advances for hemofiltration, and the obtained insight into molecular transport can aid advancements in several other bio‐systems/applications beyond hemofiltration/hemodialysis. 
    more » « less