skip to main content


Search for: All records

Creators/Authors contains: "Chernozhukov, Victor"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 8, 2024
  2. We study off-policy evaluation (OPE) for partially observable MDPs (POMDPs) with general function approximation. Existing methods such as sequential im- portance sampling estimators suffer from the curse of horizon in POMDPs. To circumvent this problem, we develop a novel model-free OPE method by introduc- ing future-dependent value functions that take future proxies as inputs and perform a similar role to that of classical value functions in fully-observable MDPs. We derive a new off-policy Bellman equation for future-dependent value functions as conditional moment equations that use history proxies as instrumental variables. We further propose a minimax learning method to learn future-dependent value functions using the new Bellman equation. We obtain the PAC result, which implies our OPE estimator is close to the true policy value under Bellman completeness, as long as futures and histories contain sufficient information about latent states. 
    more » « less
    Free, publicly-accessible full text available December 8, 2024
  3. Shape restrictions have played a central role in economics as both testable implications of theory and sufficient conditions for obtaining informative counterfactual predictions. In this paper, we provide a general procedure for inference under shape restrictions in identified and partially identified models defined by conditional moment restrictions. Our test statistics and proposed inference methods are based on the minimum of the generalized method of moments (GMM) objective function with and without shape restrictions. Uniformly valid critical values are obtained through a bootstrap procedure that approximates a subset of the true local parameter space. In an empirical analysis of the effect of childbearing on female labor supply, we show that employing shape restrictions in linear instrumental variables (IV) models can lead to shorter confidence regions for both local and average treatment effects. Other applications we discuss include inference for the variability of quantile IV treatment effects and for bounds on average equivalent variation in a demand model with general heterogeneity.

     
    more » « less
  4. Many causal and structural effects depend on regressions. Examples include policy effects, average derivatives, regression decompositions, average treatment effects, causal mediation, and parameters of economic structural models. The regressions may be high‐dimensional, making machine learning useful. Plugging machine learners into identifying equations can lead to poor inference due to bias from regularization and/or model selection. This paper gives automatic debiasing for linear and nonlinear functions of regressions. The debiasing is automatic in using Lasso and the function of interest without the full form of the bias correction. The debiasing can be applied to any regression learner, including neural nets, random forests, Lasso, boosting, and other high‐dimensional methods. In addition to providing the bias correction, we give standard errors that are robust to misspecification, convergence rates for the bias correction, and primitive conditions for asymptotic inference for estimators of a variety of estimators of structural and causal effects. The automatic debiased machine learning is used to estimate the average treatment effect on the treated for the NSW job training data and to estimate demand elasticities from Nielsen scanner data while allowing preferences to be correlated with prices and income. 
    more » « less
  5. Summary

    We provide adaptive inference methods, based on $\ell _1$ regularization, for regular (semiparametric) and nonregular (nonparametric) linear functionals of the conditional expectation function. Examples of regular functionals include average treatment effects, policy effects, and derivatives. Examples of nonregular functionals include average treatment effects, policy effects, and derivatives conditional on a covariate subvector fixed at a point. We construct a Neyman orthogonal equation for the target parameter that is approximately invariant to small perturbations of the nuisance parameters. To achieve this property, we include the Riesz representer for the functional as an additional nuisance parameter. Our analysis yields weak ‘double sparsity robustness’: either the approximation to the regression or the approximation to the representer can be ‘completely dense’ as long as the other is sufficiently ‘sparse’. Our main results are nonasymptotic and imply asymptotic uniform validity over large classes of models, translating into honest confidence bands for both global and local parameters.

     
    more » « less
  6. Triangular systems with nonadditively separable unobserved heterogeneity provide a theoretically appealing framework for the modeling of complex structural relationships. However, they are not commonly used in practice due to the need for exogenous variables with large support for identification, the curse of dimensionality in estimation, and the lack of inferential tools. This paper introduces two classes of semiparametric nonseparable triangular models that address these limitations. They are based on distribution and quantile regression modeling of the reduced form conditional distributions of the endogenous variables. We show that average, distribution, and quantile structural functions are identified in these systems through a control function approach that does not require a large support condition. We propose a computationally attractive three‐stage procedure to estimate the structural functions where the first two stages consist of quantile or distribution regressions. We provide asymptotic theory and uniform inference methods for each stage. In particular, we derive functional central limit theorems and bootstrap functional central limit theorems for the distribution regression estimators of the structural functions. These results establish the validity of the bootstrap for three‐stage estimators of structural functions, and lead to simple inference algorithms. We illustrate the implementation and applicability of all our methods with numerical simulations and an empirical application to demand analysis.

     
    more » « less
  7. Multinomial choice models are fundamental for empirical modeling of economic choices among discrete alternatives. We analyze identification of binary and multinomial choice models when the choice utilities are nonseparable in observed attributes and multidimensional unobserved heterogeneity with cross-section and panel data. We show that derivatives of choice probabilities with respect to continuous attributes are weighted averages of utility derivatives in cross-section models with exogenous heterogeneity. In the special case of random coefficient models with an independent additive effect, we further characterize that the probability derivative at zero is proportional to the population mean of the coefficients. We extend the identification results to models with endogenous heterogeneity using either a control function or panel data. In time stationary panel models with two periods, we find that differences over time of derivatives of choice probabilities identify utility derivatives “on the diagonal,” i.e. when the observed attributes take the same values in the two periods. We also show that time stationarity does not identify structural derivatives “off the diagonal” both in continuous and multinomial choice panel models. 
    more » « less