Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Inkjet three-dimensional (3D) printing has emerged as a transformative manufacturing technique, finding applications in diverse fields such as biomedical, metal fabrication, and functional materials production. It involves precise deposition of materials onto a moving substrate through a nozzle, achieving submillimeter scale resolution. However, the dynamic nature of droplet deposition introduces uncertainties, challenging consistent quality control. Current process monitoring, relying on image-based techniques, is slow and limited, hindering real-time feedback in erratic droplet ejection. In response to these challenges, we present the zero-dimensional ultrafast sensing (0-DUS) system, a novel, cost-effective, in situ monitoring tool designed to assess the quality of drop-on-demand inkjet printing. The 0-DUS system leverages the sensitivity of the light-beam field interference effect to rapidly and precisely detect and analyze localized droplets. Two core technical advancements drive this innovation: first, the exploration of integral sensing of the computational light-beam field, which allows for efficient extraction of temporal and spatial information about droplet evolution, introducing a novel in situ sensing modality; second, the establishment of a robust mapping mechanism that aligns sensor data with image-based data, facilitating accurate estimation of droplet characteristics. We successfully implemented the 0-DUS system within a commercial inkjet printer and conducted a comparative analysis with ground truth data. Our experimental results demonstrate a detection accuracy exceeding 95%, even at elevated speeds, allowing for an impressive in situ certification throughput of up to 500 Hz. Consequently, our proposed 0-DUS system meets the stringent quality assurance requirements, thereby expanding the potential applications of inkjet printing across a wide spectrum of industrial sectors.more » « lessFree, publicly-accessible full text available February 1, 2026
-
Abstract Over the course of millions of years, nature has evolved to ensure survival and presents us with a myriad of functional surfaces and structures that can boast high efficiency, multifunctionality, and sustainability. What makes these surfaces particularly practical and effective is the intricate micropatterning that enables selective interactions with microstructures. Most of these structures have been realized in the laboratory environment using numerous fabrication techniques by tailoring specific surface properties. Of the available manufacturing methods, additive manufacturing (AM) has created opportunities for fabricating these structures as the complex architectures of the naturally occurring microstructures far exceed the traditional ways. This paper presents a concise overview of the fundamentals of such patterned microstructured surfaces, their fabrication techniques, and diverse applications. A comprehensive evaluation of micro fabrication methods is conducted, delving into their respective strengths and limitations. Greater emphasis is placed on AM processes like inkjet printing and micro digital light projection printing due to the intrinsic advantages of these processes to additively fabricate high resolution structures with high fidelity and precision. The paper explores the various advancements in these processes in relation to their use in microfabrication and also presents the recent trends in applications like the fabrication of microlens arrays, microneedles, and tissue scaffolds.more » « less
-
Abstract In recent years, inkjet 3D printing has rapidly gained prominence as a disruptive fabrication technique that has witnessed ever-increasing demand in the fields of biomedicine, metal manufacturing, electronics, and functional material production. This innovative approach involves precise deposition of controlled amounts of material onto a moving substrate through a nozzle, achieving impressive sub-millimeter scale resolution by leveraging the concepts of micro-droplet deposition. However, the dynamic nature of the process introduces significant challenges related to consistency and quality control, especially in terms of reproducibility and repeatability. The key input parameters governing this process, such as pressure, voltage, jetting frequency, and duty cycle, are interrelated, entailing the identification of optimal settings in order to realize high-quality jetting. At present, the data collection heavily relies on image-based methods which are inherently slow and often fail to encompass the entirety of the data, making it difficult to determine the relation between the input parameters and jet characteristics. To address this multidimensional difficulty, we developed a unique approach based on light-beam field interruption to collect critical jet data at high speeds. This novel approach collects both temporal and spatial information on droplet evolution, making it a vital tool for enhancing our ability to attain high accuracy and control in inkjet 3D printing. To illustrate the efficacy of our approach, we model the extracted features derived from the process parameters and the extracted data to predict the droplet jetting behavior and droplet size. Specifically, a decision tree classifier is used to predict the jetting behavior and discern between “ideal” and “non-ideal” jetting behaviors. Simultaneously, a linear regression model was employed to predict the droplet size within the “ideal jetting” class based on the interplay of process parameters and the extracted features. The results emphasize the system’s accuracy in capturing the droplet behavior and size using our light-beam field interference sensing module. Furthermore, these findings establish a crucial foundation for the implementation of real-time feedback control loop in the inkjet printing process, promising advancements in adaptability and precision.more » « lessFree, publicly-accessible full text available June 17, 2025
-
Micro Projection-based Stereolithography (µPSL), also known as micro vat photopolymerization, is a promising technology that could revolutionize microfabrication by providing benefits similar to traditional lithography while reducing production time and cost. However, it faces a significant challenge in the form of the "proximity effect." This effect occurs when adjacent features are too close together, causing undesirable artifacts and limiting the achievable fabrication resolution. The proximity effect is caused by interactions between adjacent pixels of light and affects both the spatial and temporal domains of the fabrication process. Although researchers have been aware of this issue for some time, there has been little progress in understanding and addressing the proximity effect in micro vat photopolymerization. Existing models developed for laser-based systems can explain the effect to some extent, but they do not fully account for the impact of large area projection or explain how local threshold changes affect part size. This research aims to fill this knowledge gap by using in-situ observation systems to experimentally study the spatial and temporal proximity effects in single-shot vat photopolymerization microfabrication. We also investigate the role of oxygen in the proximity effect and lay the groundwork for better understanding how the effect impacts periodic structures with micronic inter-feature distances. In conclusion, while micro vat photopolymerization offers significant advantages over traditional lithography, the proximity effect remains a significant obstacle. This research represents an important step forward in addressing this challenge and improving the accuracy and resolution of vat photopolymerization in microfabrication.more » « less
-
Abstract Digital maskless lithography is gaining popularity due to its unique ability to quickly fabricate high-resolution parts without the use of physical masks. By implementing controlled grayscaling and exposure control, it has the potential to replace conventional lithography altogether. However, despite the existence of a theoretical foundation for photopolymerization, observing the voxel growth process in situ is a significant challenge. This difficulty can be attributed to several factors, including the microscopic size of the parts, the low refractive index difference between cured and uncured resin, and the rapid rate of photopolymerization once it crosses a certain threshold. As such, there is a pressing need for a system that can address these issues. To tackle these challenges, the paper proposes a modified Schlieren-based observation system that utilizes confocal magnifying optics to create a virtual screen at the camera's focal plane. This system allows for the visualization of the minute changes in refractive indices made visible by the use of Schlieren optics, specifically the deflection of light by the changing density-induced refractive index gradient. The use of focusing optics provides the system with the flexibility needed to position the virtual screen and implement optical magnification. The researchers employed single-shot binary images with different pixel numbers to fabricate voxels and examine the various factors affecting voxel shape, including chemical composition and energy input. The observed results were then compared against simulations based on Beer–Lambert's law, photopolymerization curve, and Gaussian beam propagation theory. The physical experimental results validated the effectiveness of the proposed observation system. The paper also briefly discusses the application of this system in fabricating microlenses and its advantages over theoretical model-based profile predictions.more » « less