skip to main content


Search for: All records

Creators/Authors contains: "Cho, Eunsoo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Oxygen coordination and vacancy ordering play an important role in dictating the functionality of complex oxides. In this work, an unconventional layering of oxygen ions in a mixed conductor SrCo1‐xFexO3‐δ(SCFO) thin film grown epitaxially on SrTiO3(STO) is reported. Scanning transmission electron microscopy (STEM) reveals alternating layers of oxygen deficiency along the growth direction, with the oxygen‐rich layer correlated with the neighboring Co,Fe‐site intensity, and contraction of the Sr–Sr distance. Density functional theory (DFT) calculations and STEM image simulations support the emergence of periodic (Co,Fe)O6and (Co,Fe)O4/(Co,Fe)O5layers, an ordering that is also sensitive to the Co:Fe ratio.

     
    more » « less
  2. Abstract Single-phase multiferroic materials that allow the coexistence of ferroelectric and magnetic ordering above room temperature are highly desirable, motivating an ongoing search for mechanisms for unconventional ferroelectricity in magnetic oxides. Here, we report an antisite defect mechanism for room temperature ferroelectricity in epitaxial thin films of yttrium orthoferrite, YFeO 3 , a perovskite-structured canted antiferromagnet. A combination of piezoresponse force microscopy, atomically resolved elemental mapping with aberration corrected scanning transmission electron microscopy and density functional theory calculations reveals that the presence of Y Fe antisite defects facilitates a non-centrosymmetric distortion promoting ferroelectricity. This mechanism is predicted to work analogously for other rare earth orthoferrites, with a dependence of the polarization on the radius of the rare earth cation. Our work uncovers the distinctive role of antisite defects in providing a mechanism for ferroelectricity in a range of magnetic orthoferrites and further augments the functionality of this family of complex oxides for multiferroic applications. 
    more » « less
  3. Abstract

    This work characterizes the structural, magnetic, and ferroelectric properties of epitaxial LuFeO3orthoferrite thin films with different Lu/Fe ratios. LuFeO3thin films are grown by pulsed laser deposition on SrTiO3substrates with Lu/Fe ratio ranging from 0.6 to 1.5. LuFeO3is antiferromagnetic with a weak canted moment perpendicular to the film plane. Piezoresponse force microscopy imaging and switching spectroscopy reveal room temperature ferroelectricity in Lu‐rich and Fe‐rich films, whereas the stoichiometric film shows little polarization. Ferroelectricity in Lu‐rich films is present for a range of deposition conditions and crystallographic orientations. Positive‐up‐negative‐down ferroelectric measurements on a Lu‐rich film yield ≈13 µC cm−2of switchable polarization, although the film also shows electrical leakage. The ferroelectric response is attributed to antisite defects analogous to that of Y‐rich YFeO3, yielding multiferroicity via defect engineering in a rare earth orthoferrite.

     
    more » « less
  4. Abstract

    Complex oxide films stabilized by epitaxial growth can exhibit large populations of point defects which have important effects on their properties. The site occupancy of pulsed laser‐deposited epitaxial terbium iron garnet (TbIG) films with excess terbium (Tb) is analyzed, in which the terbium:iron (Tb:Fe)ratio is 0.86 compared to the stoichiometric value of 0.6. The magnetic properties of the TbIG are sensitive to site occupancy, exhibiting a higher compensation temperature (by 90 K) and a lower Curie temperature (by 40 K) than the bulk Tb3Fe5O12garnet. Data derived from X‐ray core‐level spectroscopy, magnetometry, and molecular field coefficient modeling are consistent with occupancy of the dodecahedral sites by Tb3+, the octahedral sites by Fe3+, Tb3+and vacancies, and the tetrahedral sites by Fe3+and vacancies. Energy dispersive X‐ray spectroscopy in a scanning transmission electron microscope provides direct evidence of TbFeantisites. A small fraction of Fe2+is present, and oxygen vacancies are inferred to be present to maintain charge neutrality. Variation of the site occupancies provides a path to considerable manipulation of the magnetic properties of epitaxial iron garnet films and other complex oxides, which readily accommodate stoichiometries not found in their bulk counterparts.

     
    more » « less