skip to main content


Search for: All records

Creators/Authors contains: "Colletta, Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2025
  2. Free, publicly-accessible full text available July 1, 2025
  3. Free, publicly-accessible full text available July 1, 2025
  4. Free, publicly-accessible full text available July 1, 2025
  5. Abstract

    In this study, a conjugate radiation/conduction multimode heat transfer analysis of cryogenic focused ion beam (FIB) milling steps necessary for producing ex situ lift out specimens under cryogenic conditions (cryo-EXLO) is performed. Using finite volume for transient heat conduction and enclosure theory for radiation heat transfer, the analysis shows that as long as the specimen is attached or touching the FIB side wall trenches, the specimen will remain vitreous indefinitely, while actively cooled at liquid nitrogen (LN2) temperatures. To simulate the time needed to perform a transfer step to move the bulk sample containing the FIB-thinned specimen from the cryo-FIB to the cryo-EXLO cryostat, the LN2 temperature active cooling is turned off after steady-state conditions are reached and the specimen is monitored over time until the critical devitrification temperature is reached. Under these conditions, the sample will remain vitreous for >3 min, which is more than enough time needed to perform the cryo-transfer step from the FIB to the cryostat, which takes only ∼10 s. Cryo-transmission electron microscopy images of a manipulated cryo-EXLO yeast specimen prepared with cryo-FIB corroborates the heat transfer analysis.

     
    more » « less
  6. The growing demands for high-energy density electrical energy storage devices stimulate the coupling of conversion-type cathodes and lithium (Li) metal anodes. While promising, the use of these “Li-free” cathodes brings new challenges to the Li anode interface, as Li needs to be dissolved first during cell operation. In this study, we have achieved a direct visualization and comprehensive analysis of the dynamic evolution of the Li interface. The critical metrics of the interfacial resistance, Li growth, and solid electrolyte interface (SEI) distribution during the initial dissolution/deposition processes were systematically investigated by employing multidimensional analysis methods. They include three-electrode impedance tests, in situ atomic force microscopy, scanning electrochemical microscopy, and cryogenic scanning transmission electron microscopy. The high-resolution imaging and real-time observations show that a loose, diffuse, and unevenly distributed SEI is formed during the initial dissolution process. This leads to the dramatically fast growth of Li during the subsequent deposition, deviating from Fick’s law, which exacerbates the interfacial impedance. The compactness of the interfacial structure and enrichment of electrolyte species at the surface during the initial deposition play critical roles in the long-term stability of Li anodes, as revealed by operando confocal Raman spectroscopic mapping. Our observations relate to ion transfer, morphological and structural evolution, and Li (de)solvation at Li interfaces, revealing the underlying pathways influenced by the initial dissolution process, which promotes a reconsideration of anode investigations and effective protection strategies. 
    more » « less
  7. Abstract This work describes cryogenic ex situ lift out (cryo-EXLO) of cryogenic focused ion beam (cryo-FIB) thinned specimens for analysis by cryogenic transmission electron microscopy (cryo-TEM). The steps and apparatus necessary for cryo-EXLO are described. Methods designed to limit ice contamination include use of an anti-frost lid, a vacuum transfer assembly, and a cryostat. Cryo-EXLO is performed in a cryostat with the cryo-shuttle holder positioned in the cryogenic vapor phase above the surface of liquid N2 (LN2) using an EXLO manipulation station installed inside a glove box maintained at < 10% relative humidity and inert (e.g., N2 gas) conditions. Thermal modeling shows that a cryo-EXLO specimen will remain vitreous within its FIB trench indefinitely while LN2 is continuously supplied. Once the LN2 is cut off, modeling shows that the EXLO specimen will remain vitreous for over 4 min, allowing sufficient time for the cryo-transfer steps which take only seconds to perform. Cryo-EXLO was applied successfully to cryo-FIB-milled specimen preparation of a polymer sample and plunge-frozen yeast cells. Cryo-TEM of both the polymer and the yeast shows minimal ice contamination with the yeast specimen maintaining its vitreous phase, illustrating the potential of cryo-EXLO for cryo-FIB-TEM of beam-sensitive, liquid, or biological materials. 
    more » « less