Abstract This work describes cryogenic ex situ lift out (cryo-EXLO) of cryogenic focused ion beam (cryo-FIB) thinned specimens for analysis by cryogenic transmission electron microscopy (cryo-TEM). The steps and apparatus necessary for cryo-EXLO are described. Methods designed to limit ice contamination include use of an anti-frost lid, a vacuum transfer assembly, and a cryostat. Cryo-EXLO is performed in a cryostat with the cryo-shuttle holder positioned in the cryogenic vapor phase above the surface of liquid N2 (LN2) using an EXLO manipulation station installed inside a glove box maintained at < 10% relative humidity and inert (e.g., N2 gas) conditions. Thermal modeling shows that a cryo-EXLO specimen will remain vitreous within its FIB trench indefinitely while LN2 is continuously supplied. Once the LN2 is cut off, modeling shows that the EXLO specimen will remain vitreous for over 4 min, allowing sufficient time for the cryo-transfer steps which take only seconds to perform. Cryo-EXLO was applied successfully to cryo-FIB-milled specimen preparation of a polymer sample and plunge-frozen yeast cells. Cryo-TEM of both the polymer and the yeast shows minimal ice contamination with the yeast specimen maintaining its vitreous phase, illustrating the potential of cryo-EXLO for cryo-FIB-TEM of beam-sensitive, liquid, or biological materials.
more »
« less
Conjugate Multimode Heat Transfer Analysis of Cryogenic EXLO Manipulation
Abstract In this study, a conjugate radiation/conduction multimode heat transfer analysis of cryogenic focused ion beam (FIB) milling steps necessary for producing ex situ lift out specimens under cryogenic conditions (cryo-EXLO) is performed. Using finite volume for transient heat conduction and enclosure theory for radiation heat transfer, the analysis shows that as long as the specimen is attached or touching the FIB side wall trenches, the specimen will remain vitreous indefinitely, while actively cooled at liquid nitrogen (LN2) temperatures. To simulate the time needed to perform a transfer step to move the bulk sample containing the FIB-thinned specimen from the cryo-FIB to the cryo-EXLO cryostat, the LN2 temperature active cooling is turned off after steady-state conditions are reached and the specimen is monitored over time until the critical devitrification temperature is reached. Under these conditions, the sample will remain vitreous for >3 min, which is more than enough time needed to perform the cryo-transfer step from the FIB to the cryostat, which takes only ∼10 s. Cryo-transmission electron microscopy images of a manipulated cryo-EXLO yeast specimen prepared with cryo-FIB corroborates the heat transfer analysis.
more »
« less
- Award ID(s):
- 1719875
- PAR ID:
- 10494475
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Microscopy and Microanalysis
- Volume:
- 30
- Issue:
- 1
- ISSN:
- 1431-9276
- Format(s):
- Medium: X Size: p. 66-76
- Size(s):
- p. 66-76
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Cryo-transfer stations are essential tools in the field of cryo-electron microscopy, enabling the safe transfer of frozen vitreous samples between different stages of the workflow. However, existing cryo-transfer stations are typically configured for only the two most popular sample holder geometries and are not commercially available for all electron microscopes. Additionally, they are expensive and difficult to customize, which limits their accessibility and adaptability for research laboratories. Here, we present a new modular cryo-transfer station that addresses these limitations. The station is composed entirely of 3D-printed and off the shelf parts, allowing it to be reconfigured to a fit variety of microscopes and experimental protocols. We describe the design and construction of the station and report on the results of testing the cryo-transfer station, including its ability to maintain cryogenic temperatures and transfer frozen vitreous samples as demonstrated by vibrational spectroscopy. Our findings demonstrate that the cryo-transfer station performs comparably to existing commercial models, while offering greater accessibility and customizability. The design for the station is open source to encourage other groups to replicate and build on this development. We hope that this project will increase access to cryo-transfer stations for researchers in a variety of disciplines with nonstandard equipment.more » « less
-
We propose and test an exchange gas technique for improving the cooldown times of cryocooled gravitational-wave interferometers. The technique works by utilizing low-pressure dry nitrogen gas to create a path for heat conduction to test masses while protecting the rest of the in-vacuum equipment from unwanted heat leakage. We show that the technique is capable of shortening the total wait time to reach the operating temperature by a factor of 3.5. Additionally, our tests show that the improvement in the heat transfer rate can be predicted to be within 10% error by using the Sherman-Lees interpolation equation. The technique is compatible with vibration isolation requirements of the cryogenic shielding of 124 K silicon interferometers and has the potential to improve the iteration time for research and development. The scalability of the prototype, the ability to predict the heat conduction, and the simplicity of the engineering make the strategy a good candidate to be included in the cryogenic design of future cryocooled gravitational-wave interferometers. The findings mark a first step in the investigation for a strategy to mitigate ice formation on the interferometer optics during initial cooldown.more » « less
-
Abstract Radiation as a heat transfer mode inside a bulk material is usually negligible in comparison to conduction. Here, the contribution of radiation to energy transport inside a hyperbolic material, hexagonal boron nitride (hBN), is investigated. With hyperbolic dispersion, i.e., opposite signs of dielectric components along principal directions, phonon polaritons contribute significantly to energy transport due to a much greater number of propagating modes compared to that in a normal material. A many‐body model is developed to account for radiative heat transfer in a material with a nonuniform temperature distribution. The total radiative heat transfer through hBN is found to be largely contributed by the high‐κ modes within the Reststrahlen bands, and is comparable to phonon conduction. Experimental measurements of temperature‐dependent thermal transport also show that radiative contribution to thermal transport is of the same order as that from phonons. Therefore, this work shows, for the first time, radiative heat transfer inside a material can be comparable to phonon conductive heat transfer.more » « less
-
A study was conducted to investigate the temperature dependence of thermomechanical coupling in Inconel 718 (IN718). IN718 was selected as a model material due to deformation being predominantly accommodated by planar slip. Split-Hopkinson (or Kolsky) tension bar experiments were conducted at a nominal strain rate of 750 s^-1 at room temperature and 450 ^o C, representing homologous temperatures (T_H=T/T_melt) of T_H = 0.2 and T_H = 0.5, respectively. During deformation, specimen gauge sections were imaged with a high-speed infrared camera. Using one-dimensional wave analysis, the transient heat conduction equation, and temperature- dependent specific heat capacity values, the temperature rise as a function of plastic strain was used to calculate plastic work, thermal work, and the plastic work to heat conversion efficiency, commonly known as the Taylor–Quinney coefficient (TQC). As expected, a significant reduction in plastic work was observed during testing at elevated temperatures. The temperature rise due to plastic deformation was observed to be lower at room temperature compared to elevated temperature experiments. It is reported here for the first time that the TQC is a temperature-sensitive quantity. At T_H = 0.5, a nearly complete conversion of plastic work to heat was observed (TQC = 1.0). Under ambient conditions of T_H = 0.2, a much lower efficiency TQC = 0.4 was observed.more » « less