skip to main content

Search for: All records

Creators/Authors contains: "Cordell, Susan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Understanding how environmental adaptations mediate plant and ecosystem responses becomes increasingly important under accelerating global environmental change. Multi-stemmed trees, for example, differ in form and function from single-stemmed trees and may possess physiological advantages that allow for persistence during stressful climatic events such as extended drought. Following the worst drought in Hawaii in a century, we examined patterns of stem abundance and turnover in a Hawaiian lowland dry forest (LDF) and a montane wet forest (MWF) to investigate how multi-stemmed trees might influence site persistence, and how stem abundance and turnover relate to key functional traits. We found stem abundance and multi-stemmed trees to be an important component for climate resilience within the LDF. The LDF had higher relative abundance of multi-stemmed trees, stem abundance, and mean stem abundance compared to a reference MWF. Within the LDF, multi-stemmed trees had higher relative stem abundance (i.e., percent composition of stems to the total number of stems in the LDF) and higher estimated aboveground carbon than single-stemmed trees. Stem abundance varied among species and tree size classes. Stem turnover (i.e., change in stem abundance between five-year censuses) varied among species and tree size classes and species mean stem turnover was correlated withmore »mean species stem abundance per tree. At the plot level, stem abundance per tree is also a predictor of survival, though mortality did not differ between multiple- and single-stemmed trees. Lastly, species with higher mean stem abundance per tree tended to have traits associated with a higher light-saturated photosynthetic rate, suggesting greater productivity in periods with higher water supply. Identifying the traits that allow species and forest communities to persist in dry environments or respond to disturbance is useful for forecasting ecological climate resilience or potential for restoration in tropical dry forests.« less
    Free, publicly-accessible full text available June 1, 2023
  2. Globalization has undeniably impacted the Earth’s ecosystems, but it has also influenced how we think about natural systems. Three fourths of the world’s forests are now altered by human activity, which challenges our concepts of native ecosystems. The dichotomies of pristine vs. disturbed as well as our view of native and non-native species, have blurred; allowing us to acknowledge new paradigms about how humans and nature interact. We now understand that the use of militaristic language to define the perceived role of a plant species is holding us back from the fact that novel systems (new combinations of all species) can often provide valuable ecosystem services (i.e., water, carbon, nutrients, cultural, and recreation) for creatures (including humans). In reality, ecosystems exist in a gradient from native to intensely managed – and “non-nativeness” is not always a sign of a species having negative effects. In fact, there are many contemporary examples of non-native species providing critical habitat for endangered species or preventing erosion in human-disturbed watersheds. For example, of the 8,000–10,000 non-native species introduced to Hawai‘i, less than 10% of these are self-sustaining and 90 of those pose a danger to native biota and are considered invasive. In this paper, wemore »explore the native/non-native binary, the impacts of globalization and the political language of invasion through the lens of conservation biology and sociology with a tropical island perspective. This lens gives us the opportunity to offer a place-based approach toward the use of empirical observation of novel species interactions that may help in evaluating management strategies that support biodiversity and ecosystem services. Finally, we offer a first attempt at conceptualizing a site-specific approach to develop “metrics of belonging” within an ecosystem.« less
  3. null (Ed.)
  4. Free, publicly-accessible full text available June 1, 2023
  5. Abstract Arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) associations are critical for host-tree performance. However, how mycorrhizal associations correlate with the latitudinal tree beta-diversity remains untested. Using a global dataset of 45 forest plots representing 2,804,270 trees across 3840 species, we test how AM and EcM trees contribute to total beta-diversity and its components (turnover and nestedness) of all trees. We find AM rather than EcM trees predominantly contribute to decreasing total beta-diversity and turnover and increasing nestedness with increasing latitude, probably because wide distributions of EcM trees do not generate strong compositional differences among localities. Environmental variables, especially temperature and precipitation, are strongly correlated with beta-diversity patterns for both AM trees and all trees rather than EcM trees. Results support our hypotheses that latitudinal beta-diversity patterns and environmental effects on these patterns are highly dependent on mycorrhizal types. Our findings highlight the importance of AM-dominated forests for conserving global forest biodiversity.