skip to main content

Search for: All records

Creators/Authors contains: "Costa, Edgar"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We report on our results concerning the distribution of the geometric Picard ranks of K 3 surfaces under reduction modulo various primes. In the situation that $${\mathop {{\mathrm{rk}}}\nolimits \mathop {{\mathrm{Pic}}}\nolimits S_{{\overline{K}}}}$$ rk Pic S K ¯ is even, we introduce a quadratic character, called the jump character, such that $${\mathop {{\mathrm{rk}}}\nolimits \mathop {{\mathrm{Pic}}}\nolimits S_{{\overline{{\mathbb {F}}}}_{\!{{\mathfrak {p}}}}} > \mathop {{\mathrm{rk}}}\nolimits \mathop {{\mathrm{Pic}}}\nolimits S_{{\overline{K}}}}$$ rk Pic S F ¯ p > rk Pic S K ¯ for all good primes at which the character evaluates to $$(-1)$$ ( - 1 ) .
  2. Abstract Let ℙ denote the weighted projective space with weights (1, 1, 1, 3) over the rationals, with coordinates x , y , z and w ; let $\mathcal{X}$ be the generic element of the family of surfaces in ℙ given by \begin{equation*}X\colon w^2=x^6+y^6+z^6+tx^2y^2z^2.\end{equation*} The surface $\mathcal{X}$ is a K3 surface over the function field ℚ( t ). In this paper, we explicitly compute the geometric Picard lattice of $\mathcal{X}$ , together with its Galois module structure, as well as derive more results on the arithmetic of $\mathcal{X}$ and other elements of the family X .
  3. Abstract The zeta function of a curve C over a finite field may be expressed in terms of the characteristic polynomial of a unitary matrix Θ C . We develop and present a new technique to compute the expected value of tr(Θ C n ) for various moduli spaces of curves of genus g over a fixed finite field in the limit as g is large, generalising and extending the work of Rudnick [ Rud10 ] and Chinis [ Chi16 ]. This is achieved by using function field zeta functions, explicit formulae, and the densities of prime polynomials with prescribedmore »ramification types at certain places as given in [ BDF + 16 ] and [ Zha ]. We extend [ BDF + 16 ] by describing explicit dependence on the place and give an explicit proof of the Lindelöf bound for function field Dirichlet L -functions L (1/2 + it , χ). As applications, we compute the one-level density for hyperelliptic curves, cyclic ℓ-covers, and cubic non-Galois covers.« less