skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cui, Jun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Antiferroelectric (Pb0.87Sr0.05Ba0.05La0.02)(Zr0.52Sn0.40Ti0.08)O3 thin film capacitors were fabricated for dielectric energy storage. Thin films with excellent crystal quality (FWHM 0.021°) were prepared on (100) SrRuO3/SrTiO3 substrates by pulsed laser deposition. The out-of-plane lattice constant of the thin film was 4.110 ± 0.001 Å. An average maximum recoverable energy storage density, 88 ± 17 J cm−3 with an efficiency of 85% ± 6% at 1 kHz and 80 ± 15 J cm−3 with an efficiency of 91% ± 4% at 10 kHz, was achieved at room temperature. The capacitor was fatigue resistant up to 106 cycles at an applied electric field of 2 MV cm−1. These properties are linked to a low level of hysteresis and slow polarization saturation. PbZrO3-derived oxide thin film capacitors are promising for high efficiency and low loss dielectric energy storage applications. 
    more » « less
    Free, publicly-accessible full text available November 18, 2025
  2. The use of nanoporous metals as catalysts has attracted significant interest in recent years. Their high‐curvature, nanoscale ligaments provide not only high surface area but also a high density of undercoordinated step edge and kink sites. However, their long‐term stability, especially at higher temperatures, is often limited by thermal coarsening and the associated loss of surface area. Herein, it is demonstrated that the nanoscale morphology of nanoporous Cu can be regenerated by applying oxidation/reduction cycles at 250 °C. Specifically, the morphological evolution and H2dissociation activity of hierarchical nanoporous Cu catalysts doped with Ti during structural rearrangement triggered by oxidative and reductive atmospheres at elevated temperatures are studied. In addition to coarsening of the structure at elevated temperatures, oxidation at 400 °C causes an expansion of the ligaments. Subsequent reduction at 400 °C leads to the formation of particles and a drop in the H2dissociation activity compared the fresh catalyst. However, performing the redox cycle at 250 °C reverses coarsening and boosts the H2dissociation activity for the hydrogen–deuterium (H2–D2) reaction. Herein, the possibility to reverse coarsening is demonstrated, thereby mitigating the loss of activity frequently observed in nanoporous catalysts. 
    more » « less
  3. Elastocaloric cooling, a solid-state cooling technology, exploits the latent heat released and absorbed by stress-induced phase transformations. Hysteresis associated with transformation, however, is detrimental to efficient energy conversion and functional durability. We have created thermodynamically efficient, low-hysteresis elastocaloric cooling materials by means of additive manufacturing of nickel-titanium. The use of a localized molten environment and near-eutectic mixing of elemental powders has led to the formation of nanocomposite microstructures composed of a nickel-rich intermetallic compound interspersed among a binary alloy matrix. The microstructure allowed extremely small hysteresis in quasi-linear stress-strain behaviors—enhancing the materials efficiency by a factor of four to seven—and repeatable elastocaloric performance over 1 million cycles. Implementing additive manufacturing to elastocaloric cooling materials enables distinct microstructure control of high-performance metallic refrigerants with long fatigue life. 
    more » « less
  4. Abstract Large eddy simulation (LES) of the Martian convective boundary layer (CBL) with a Mars‐adapted version of the Weather Research and Forecasting model is used to examine the impact of aerosol dust radiative‐dynamical feedbacks on turbulent mixing. The LES is validated against spacecraft observations and prior modeling. To study dust redistribution by coherent dynamical structures within the CBL, two radiatively active dust distribution scenarios are used: one in which the dust distribution remains fixed and another in which dust is freely transported by CBL motions. In the fixed dust scenario, increasing atmospheric dust loading shades the surface from sunlight and weakens convection. However, a competing effect emerges in the free dust scenario, resulting from the lateral concentration of dust in updrafts. The resulting enhancement of dust radiative heating in upwelling plumes both generates horizontal thermal contrasts in the CBL and increases buoyancy production, jointly enhancing CBL convection. We define a dust inhomogeneity index (DII) to quantify how much dust is concentrated in upwelling plumes. If the DII is large enough, the destabilizing effect of lateral heating contrasts can exceed the stabilizing effect of surface shading such that the CBL depth increases with increasing dust optical depth. Thus, under certain combinations of total dust optical depth and the lateral inhomogeneity of dust, a positive feedback exists between dust optical depth, the vigor and depth of CBL mixing, and—to the extent that dust lifting is controlled by the depth and vigor of CBL mixing—the further lifting of dust from the surface. 
    more » « less