skip to main content

Search for: All records

Creators/Authors contains: "Dahnovsky, Yuri"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We study helical structures in spin-spiral single crystals. In the continuum approach for the helicity potential energy the simple electronic band splits into two non-parabolic bands. For low exchange integrals, the lower band is described by a surface with a saddle shape in the direction of the helicity axis. Using the Boltzmann equation with the relaxation due to acoustic phonons, we discover the dependence of the current on the angle between the electric field and helicity axis leading to the both parallel and perpendicular to the electric field components in the electroconductivity. The latter can be interpreted as a planar Hall effect. In addition, we find that the transition rates depend on an electron spin allowing the transition between the bands. The electric conductivities exhibit nonlinear behaviors with respect to chemical potential µ . We explain this effect as the interference of the band anisotropy, spin conservation, and interband transitions. The proposed theory with the spherical model in the effective mass approximation for conduction electrons can elucidate nonlinear dependencies that can be identified in experiments. We find the excellent agreement between the theoretical and experimental data for parallel resistivity depending on temperature at the phase transition from helical tomore »ferromagnetic state in a M n P single crystal. In addition, we predict that the perpendicular resistivity abruptly drops to zero in the ferromagnetic phase.« less
    Free, publicly-accessible full text available November 3, 2023
  2. CrBr 3 is a layered van der Waals material with magnetic ordering down to the 2D limit. For decades, based on optical measurements, it is believed that the energy gap of CrBr 3 is in the range of 1.68–2.1 eV. However, controversial results have indicated that the band gap of CrBr 3 is possibly smaller than that. An unambiguous determination of the energy gap is critical to the correct interpretations of the experimental results of CrBr 3 . Here, we present the scanning tunneling microscopy and spectroscopy (STM/S) results of CrBr 3 thin and thick flakes exfoliated onto highly ordered pyrolytic graphite (HOPG) surfaces and density functional theory (DFT) calculations to reveal the small energy gap (peak-to-peak energy gap to be 0.57 ± 0.04 eV; or the onset signal energy gap to be 0.29 ± 0.05 eV from d I /d V spectra). Atomic resolution topography images show the defect-free crystal structure and the d I /d V spectra exhibit multiple peak features measured at 77 K. The conduction band – valence band peak pairs in the multi-peak d I /d V spectrum agree very well with all reported optical transitions. STM topography images of mono- and bi-layer CrBr 3more »flakes exhibit edge degradation due to short air exposure (∼15 min) during sample transfer. The unambiguously determined small energy gap settles the controversy and is the key in better understanding CrBr 3 and similar materials.« less
  3. The need for magnetic 2D materials that are stable to the enviroment and have high Curie temperatures is very important for various electronic and spintronic applications. We have found that two-dimensional porphyrin-type aza-conjugated microporous polymer crystals are such a material (Fe-aza-CMPs). Fe-aza-CMPs are stable to CO, CO 2 , and O 2 atmospheres and show unusual adsorption, electronic, and magnetic properties. Indeed, they are semiconductors with small energy band gaps ranging from 0.27 eV to 0.626 eV. CO, CO 2 , and O 2 molecules can be attached in three different ways where single, double, or triple molecules are bound to iron atoms in Fe-aza-CMPs. For different attachment configurations we find that for CO and CO 2 a uniform distribution of the molecules is most energetically favorable while for O 2 molecules aggregation is most energetically preferable. The magnetic moments decrease from 4 to 2 to 0 for singly, doubly, triply occupied configurations for all gasses respectively. The most interesting magnetic properties are found for O 2 molecules attached to the Fe-aza-CMP. For a single attachment configuration we find that an antiferromagnetic state is favorable. When two O 2 molecules are attached, the calculations show the highest exchange integral withmore »a value of J = 1071 μeV. This value has been verified by two independent methods where in the first method J is calculated by the energy difference between ferromagnetic and anitferromagnetic configurations. The second method is based on the frozen magnon approach where the magnon dispersion curve has been fitted by the Ising model. For the second method J has been estimated at J = 1100 μeV in excellent agreement with the first method.« less
  4. In this work we study a low-cost two-dimensional ferromagnetic semiconductor with possible applications in biomedicine, solar cells, spintronics, and energy and hydrogen storage. From first principle calculations we describe the unique electronic, transport, optical, and magnetic properties of a π-conjugated micropore polymer (CMP) with three iron atoms placed in the middle of an isolated pore locally resembling heme complexes. This material exhibits strong Fe-localized d z2 bands. The bandgap is direct and equal to 0.28 eV. The valence band is doubly degenerate at the Γ -point and for larger k -wavevectors the HOMO band becomes flat with low contribution to charge mobility. The absorption coefficient is roughly isotropic. The conductivity is also isotropic with the nonzero contribution in the energy range 0.3–8 eV. The xy -component of the imaginary part of the dielectric tensor determines the magneto-optical Faraday and Kerr rotation. Nonvanishing rotation is observed in the interval of 0.5–5.0 eV. This material is found to be a ferromagnet of an Ising type with long-range exchange interactions with a very high magnetic moment per unit cell, m = 6 μ B . The exchange integral is calculated by two independent methods: (a) from the energy difference between ferromagnetic and antiferromagneticmore »states and (b) from a magnon dispersion curve. In the former case J nn = 27 μeV. In the latter case the magnon dispersion is fitted by the Ising model with the nearest and next-nearest neighbor spin interactions. From these estimations we find that J nn = 19.5 μeV and J nnn = −3 μeV. Despite the different nature of the calculations, the exchange integrals are only within 28% difference.« less