Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract We present the largest catalog to date of star clusters and compact associations in nearby galaxies. We have performed aV-band-selected census of clusters across the 38 spiral galaxies of the PHANGS–Hubble Space Telescope (HST) Treasury Survey, and measured integrated, aperture-corrected near-ultraviolet-U-B-V-Iphotometry. This work has resulted in uniform catalogs that contain ∼20,000 clusters and compact associations, which have passed human inspection and morphological classification, and a larger sample of ∼100,000 classified by neural network models. Here, we report on the observed properties of these samples, and demonstrate that tremendous insight can be gained from just the observed properties of clusters, even in the absence of their transformation into physical quantities. In particular, we show the utility of the UBVI color–color diagram, and the three principal features revealed by the PHANGS-HST cluster sample: the young cluster locus, the middle-age plume, and the old globular cluster clump. We present an atlas of maps of the 2D spatial distribution of clusters and compact associations in the context of the molecular clouds from PHANGS–Atacama Large Millimeter/submillimeter Array. We explore new ways of understanding this large data set in a multiscale context by bringing together once-separate techniques for the characterization of clusters (color–color diagrams and spatial distributions) and their parent galaxies (galaxy morphology and location relative to the galaxy main sequence). A companion paper presents the physical properties: ages, masses, and dust reddenings derived using improved spectral energy distribution fitting techniques.more » « less
- 
            null (Ed.)ABSTRACT When completed, the PHANGS–HST project will provide a census of roughly 50 000 compact star clusters and associations, as well as human morphological classifications for roughly 20 000 of those objects. These large numbers motivated the development of a more objective and repeatable method to help perform source classifications. In this paper, we consider the results for five PHANGS–HST galaxies (NGC 628, NGC 1433, NGC 1566, NGC 3351, NGC 3627) using classifications from two convolutional neural network architectures (RESNET and VGG) trained using deep transfer learning techniques. The results are compared to classifications performed by humans. The primary result is that the neural network classifications are comparable in quality to the human classifications with typical agreement around 70 to 80 per cent for Class 1 clusters (symmetric, centrally concentrated) and 40 to 70 per cent for Class 2 clusters (asymmetric, centrally concentrated). If Class 1 and 2 are considered together the agreement is 82 ± 3 per cent. Dependencies on magnitudes, crowding, and background surface brightness are examined. A detailed description of the criteria and methodology used for the human classifications is included along with an examination of systematic differences between PHANGS–HST and LEGUS. The distribution of data points in a colour–colour diagram is used as a ‘figure of merit’ to further test the relative performances of the different methods. The effects on science results (e.g. determinations of mass and age functions) of using different cluster classification methods are examined and found to be minimal.more » « less
- 
            null (Ed.)ABSTRACT We present improved methods for segmenting CO emission from galaxies into individual molecular clouds, providing an update to the cprops algorithms presented by Rosolowsky & Leroy. The new code enables both homogenization of the noise and spatial resolution among data, which allows for rigorous comparative analysis. The code also models the completeness of the data via false source injection and includes an updated segmentation approach to better deal with blended emission. These improved algorithms are implemented in a publicly available Python package, pycprops. We apply these methods to 10 of the nearest galaxies in the PHANGS-ALMA survey, cataloguing CO emission at a common 90 pc resolution and a matched noise level. We measure the properties of 4986 individual clouds identified in these targets. We investigate the scaling relations among cloud properties and the cloud mass distributions in each galaxy. The physical properties of clouds vary among galaxies, both as a function of galactocentric radius and as a function of dynamical environment. Overall, the clouds in our target galaxies are well-described by approximate energy equipartition, although clouds in stellar bars and galaxy centres show elevated line widths and virial parameters. The mass distribution of clouds in spiral arms has a typical mass scale that is 2.5× larger than interarm clouds and spiral arms clouds show slightly lower median virial parameters compared to interarm clouds (1.2 versus 1.4).more » « less
- 
            null (Ed.)Abstract PHANGS-HST is an ultraviolet-optical imaging survey of 38 spiral galaxies within ∼20 Mpc. Combined with the PHANGS-ALMA, PHANGS-MUSE surveys and other multiwavelength data, the dataset will provide an unprecedented look into the connections between young stars, H ii regions, and cold molecular gas in these nearby star-forming galaxies. Accurate distances are needed to transform measured observables into physical parameters (e.g., brightness to luminosity, angular to physical sizes of molecular clouds, star clusters and associations). PHANGS-HST has obtained parallel ACS imaging of the galaxy halos in the F606W and F814W bands. Where possible, we use these parallel fields to derive tip of the red giant branch (TRGB) distances to these galaxies. In this paper, we present TRGB distances for 11 galaxies from ∼4 to ∼15 Mpc, based on the first year of PHANGS-HST observations. Five of these represent the first published TRGB distance measurements (IC 5332, NGC 2835, NGC 4298, NGC 4321, and NGC 4328), and eight of which are the best available distances to these targets. We also provide a compilation of distances for the 118 galaxies in the full PHANGS sample, which have been adopted for the first PHANGS-ALMA public data release.more » « less
- 
            null (Ed.)ABSTRACT The spatial distribution of metals reflects, and can be used to constrain, the processes of chemical enrichment and mixing. Using PHANGS-MUSE optical integral field spectroscopy, we measure the gas-phase oxygen abundances (metallicities) across 7138 H ii regions in a sample of eight nearby disc galaxies. In Paper I, we measure and report linear radial gradients in the metallicities of each galaxy, and qualitatively searched for azimuthal abundance variations. Here, we examine the 2D variation in abundances once the radial gradient is subtracted, Δ(O/H), in order to quantify the homogeneity of the metal distribution and to measure the mixing scale over which H ii region metallicities are correlated. We observe low (0.03–0.05 dex) scatter in Δ(O/H) globally in all galaxies, with significantly lower (0.02–0.03 dex) scatter on small (<600 pc) spatial scales. This is consistent with the measurement uncertainties, and implies the 2D metallicity distribution is highly correlated on scales of ≲600 pc. We compute the two-point correlation function for metals in the disc in order to quantify the scale lengths associated with the observed homogeneity. This mixing scale is observed to correlate better with the local gas velocity dispersion (of both cold and ionized gas) than with the star formation rate. Selecting only H ii regions with enhanced abundances relative to a linear radial gradient, we do not observe increased homogeneity on small scales. This suggests that the observed homogeneity is driven by the mixing introducing material from large scales rather than by pollution from recent and on-going star formation.more » « less
- 
            Abstract The PHANGS program is building the first data set to enable the multiphase, multiscale study of star formation across the nearby spiral galaxy population. This effort is enabled by large survey programs with the Atacama Large Millimeter/submillimeter Array (ALMA), MUSE on the Very Large Telescope, and the Hubble Space Telescope (HST), with which we have obtained CO(2–1) imaging, optical spectroscopic mapping, and high-resolution UV–optical imaging, respectively. Here, we present PHANGS-HST, which has obtained NUV– U – B – V – I imaging of the disks of 38 spiral galaxies at distances of 4–23 Mpc, and parallel V - and I -band imaging of their halos, to provide a census of tens of thousands of compact star clusters and multiscale stellar associations. The combination of HST, ALMA, and VLT/MUSE observations will yield an unprecedented joint catalog of the observed and physical properties of ∼100,000 star clusters, associations, H ii regions, and molecular clouds. With these basic units of star formation, PHANGS will systematically chart the evolutionary cycling between gas and stars across a diversity of galactic environments found in nearby galaxies. We discuss the design of the PHANGS-HST survey and provide an overview of the HST data processing pipeline and first results. We highlight new methods for selecting star cluster candidates, morphological classification of candidates with convolutional neural networks, and identification of stellar associations over a range of physical scales with a watershed algorithm. We describe the cross-observatory imaging, catalogs, and software products to be released. The PHANGS high-level science products will seed a broad range of investigations, in particular, the study of embedded stellar populations and dust with the James Webb Space Telescope, for which a PHANGS Cycle 1 Treasury program to obtain eight-band 2–21 μ m imaging has been approved.more » « less
- 
            Abstract We present a rich, multiwavelength, multiscale database built around the PHANGS–ALMA CO (2 − 1) survey and ancillary data. We use this database to present the distributions of molecular cloud populations and subgalactic environments in 80 PHANGS galaxies, to characterize the relationship between population-averaged cloud properties and host galaxy properties, and to assess key timescales relevant to molecular cloud evolution and star formation. We show that PHANGS probes a wide range of kpc-scale gas, stellar, and star formation rate (SFR) surface densities, as well as orbital velocities and shear. The population-averaged cloud properties in each aperture correlate strongly with both local environmental properties and host galaxy global properties. Leveraging a variable selection analysis, we find that the kpc-scale surface densities of molecular gas and SFR tend to possess the most predictive power for the population-averaged cloud properties. Once their variations are controlled for, galaxy global properties contain little additional information, which implies that the apparent galaxy-to-galaxy variations in cloud populations are likely mediated by kpc-scale environmental conditions. We further estimate a suite of important timescales from our multiwavelength measurements. The cloud-scale freefall time and turbulence crossing time are ∼5–20 Myr, comparable to previous cloud lifetime estimates. The timescales for orbital motion, shearing, and cloud–cloud collisions are longer, ∼100 Myr. The molecular gas depletion time is 1–3 Gyr and shows weak to no correlations with the other timescales in our data. We publish our measurements online, and expect them to have broad utility to future studies of molecular clouds and star formation.more » « less
- 
            Abstract We present PHANGS–ALMA, the first survey to map CO J = 2 → 1 line emission at ∼1″ ∼100 pc spatial resolution from a representative sample of 90 nearby ( d ≲ 20 Mpc) galaxies that lie on or near the z = 0 “main sequence” of star-forming galaxies. CO line emission traces the bulk distribution of molecular gas, which is the cold, star-forming phase of the interstellar medium. At the resolution achieved by PHANGS–ALMA, each beam reaches the size of a typical individual giant molecular cloud, so that these data can be used to measure the demographics, life cycle, and physical state of molecular clouds across the population of galaxies where the majority of stars form at z = 0. This paper describes the scientific motivation and background for the survey, sample selection, global properties of the targets, Atacama Large Millimeter/submillimeter Array (ALMA) observations, and characteristics of the delivered data and derived data products. As the ALMA sample serves as the parent sample for parallel surveys with MUSE on the Very Large Telescope, the Hubble Space Telescope, AstroSat, the Very Large Array, and other facilities, we include a detailed discussion of the sample selection. We detail the estimation of galaxy mass, size, star formation rate, CO luminosity, and other properties, compare estimates using different systems and provide best-estimate integrated measurements for each target. We also report the design and execution of the ALMA observations, which combine a Cycle 5 Large Program, a series of smaller programs, and archival observations. Finally, we present the first 1″ resolution atlas of CO emission from nearby galaxies and describe the properties and contents of the first PHANGS–ALMA public data release.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
