skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Del Giudice, Max"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    This paper presents a design framework for machine learning applications that operate in systems such as cyber-physical systems where time is a scarce resource. We manage the tradeoff between processing time and solution quality by performing as much preprocessing of data as time will allow. This approach leads us to a design framework in which there are two separate learning networks: one for preprocessing and one for the core application functionality. We show how these networks can be trained together and how they can operate in an anytime fashion to optimize performance. 
    more » « less
  2. null (Ed.)
    Modern generative techniques, deriving realistic data from incomplete or noisy inputs, require massive computation for rigorous results. These limitations hinder generative techniques from being incorporated in systems in resource-constrained environment, thus motivating methods that grant users control over the time-quality trade-offs for a reasonable "payoff" of execution cost. Hence, as a new paradigm for adaptively organizing and employing recurrent networks, we propose an architectural design for generative modeling achieving flexible quality. We boost the overall efficiency by introducing non-recurrent layers into stacked recurrent architectures. Accordingly, we design the architecture with no redundant recurrent cells so we avoid unnecessary overhead. 
    more » « less