skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Deng, Jiahao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Continuum arms are more adaptable to their environments and inherently human-friendly compared to their rigid counterparts. Path planning of continuum arms is an active research area with many challenges. The hyper-redundancy of continuum arms, which renders them highly versatile, is their curse in path planning. This problem becomes even more challenging in dynamic environments in the presence of mobile obstacles. In this paper, we propose an anticipatory path planning approach for continuum arms in dynamic environments. Our approach is based on obstacle prediction coupled with temporal graphs to model the dynamic environment. We evaluate the proposed approach’s performance and compare it to prevailing path planning approaches for continuum arms in dynamic environments. 
    more » « less
  2. We study the path planning problem for continuum-arm robots, in which we are given a starting and an end point, and we need to compute a path for the tip of the continuum arm between the two points. We consider both cases where obstacles are present and where they are not. We demonstrate how to leverage the continuum arm features to introduce a new model that enables a path planning approach based on the configurations graph, for a continuum arm consisting of three sections, each consisting of three muscle actuators. The algorithm we apply to the configurations graph allows us to exploit parallelism in the computation to obtain efficient implementation. We conducted extensive tests, and the obtained results show the completeness of the proposed algorithm under the considered discretizations, in both cases where obstacles are present and where they are not. We compared our approach to the standard inverse kinematics approach. While the inverse kinematics approach is much faster when successful, our algorithm always succeeds in finding a path or reporting that no path exists, compared to a roughly 70% success rate of the inverse kinematics approach (when a path exists). 
    more » « less