skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Anticipatory Path Planning for Continuum Arms in Dynamic Environments
Continuum arms are more adaptable to their environments and inherently human-friendly compared to their rigid counterparts. Path planning of continuum arms is an active research area with many challenges. The hyper-redundancy of continuum arms, which renders them highly versatile, is their curse in path planning. This problem becomes even more challenging in dynamic environments in the presence of mobile obstacles. In this paper, we propose an anticipatory path planning approach for continuum arms in dynamic environments. Our approach is based on obstacle prediction coupled with temporal graphs to model the dynamic environment. We evaluate the proposed approach’s performance and compare it to prevailing path planning approaches for continuum arms in dynamic environments.  more » « less
Award ID(s):
1718755
PAR ID:
10388853
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
IEEE International Conference on Robotics and Automation (ICRA)
Page Range / eLocation ID:
7815 to 7820
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Continuum arms, with their mix of compliance, payload, safety, and manipulability, are perfectly suited to serve as co-robots, and their applications range from industry and manufacturing to human healthcare. Their hyper-redundancy serves as their most significant challenge for path planning and path planning approaches commonly used with rigid-link robots, such as inverse kinematics, that fail to provide reliable trajectories for continuum arms. We propose an Inverse Kinematics-based approach to address the limitations of previously-proposed Kinematics-based approaches. Using this new approach, we are able to efficiently generate very rich sets of configurations, which, in turn, lead to smooth path planning for such continuum manipulators. To validate the smoothness of the paths generated by our approach, we apply dynamics constraints to the generated trajectories. We show that, when tracked by a controller, the paths that are generated using the proposed approach are much smoother than previously-proposed Kinematics-based approaches: The proposed approach allows the continuum arm to traverse the trajectories very accurately and in time less than half of that taken by previous (reliable) path planning approaches. 
    more » « less
  2. Multisection continuum arms are bio-inspired manipulators that combine compliance, payload, dexterity, and safety to serve as co-robots in human-robot collaborative domains. Their hyper redundancy and complex kinematics, however, pose many challenges when performing path planning, especially in dynamic environments. In this paper, we present a W-Space based Rapidly Exploring Random Trees * path planner for multisection continuum arm robots in dynamic environments. The proposed planner improves the existing state-of-art planners in terms of computation time and the success rate, while removing the need for offline computation. On average, the computation time of our approach is below 2 seconds, and its average success rate is around 70 %. The computation time of the proposed planner significantly improves that of the state-of-the-art planner by roughly a factor of 20, making the former suitable for real-time applications. Moreover, for application domains where the obstacle motion is not very predictable (e.g., human obstacles), the proposed planner significantly improves the success rate of state-of-the-art planners by nearly 50 %. Lastly, we demonstrate the feasibility of several generated trajectories by replicating the motion on a physical prototype arm. 
    more » « less
  3. Multisection continuum arms offer complementary characteristics to those of traditional rigid-bodied robots. Inspired by biological appendages, such as elephant trunks and octopus arms, these robots trade rigidity for compliance and accuracy for safety and, therefore, exhibit strong potential for applications in human-occupied spaces. Prior work has demonstrated their superiority in operation in congested spaces and manipulation of irregularly shaped objects. However, they are yet to be widely applied outside laboratory spaces. One key reason is that, due to compliance, they are difficult to control. Sophisticated and numerically efficient dynamic models are a necessity to implement dynamic control. In this paper, we propose a novel numerically stable center-of-gravity-based dynamic model for variable-length multisection continuum arms. The model can accommodate continuum robots having any number of sections with varying physical dimensions. The dynamic algorithm is of O(n2) complexity, runs at 9.5 kHz, simulates six to eight times faster than real time for a three-section continuum robot, and, therefore, is ideally suited for real-time control implementations. The model accuracy is validated numerically against an integral-dynamic model proposed by the authors and experimentally for a three-section pneumatically actuated variable-length multisection continuum arm. This is the first sub-real-time dynamic model based on a smooth continuous deformation model for variable-length multisection continuum arms. 
    more » « less
  4. We study the path planning problem for continuum-arm robots, in which we are given a starting and an end point, and we need to compute a path for the tip of the continuum arm between the two points. We consider both cases where obstacles are present and where they are not. We demonstrate how to leverage the continuum arm features to introduce a new model that enables a path planning approach based on the configurations graph, for a continuum arm consisting of three sections, each consisting of three muscle actuators. The algorithm we apply to the configurations graph allows us to exploit parallelism in the computation to obtain efficient implementation. We conducted extensive tests, and the obtained results show the completeness of the proposed algorithm under the considered discretizations, in both cases where obstacles are present and where they are not. We compared our approach to the standard inverse kinematics approach. While the inverse kinematics approach is much faster when successful, our algorithm always succeeds in finding a path or reporting that no path exists, compared to a roughly 70% success rate of the inverse kinematics approach (when a path exists). 
    more » « less
  5. Humanoid robots dynamically navigate an environment by interacting with it via contact wrenches exerted at intermittent contact poses. Therefore, it is important to consider dynamics when planning a contact sequence. Traditional contact planning approaches assume a quasi-static balance criterion to reduce the computational challenges of selecting a contact sequence over a rough terrain. This however limits the applicability of the approach when dynamic motions are required, such as when walking down a steep slope or crossing a wide gap. Recent methods overcome this limitation with the help of efficient mixed integer convex programming solvers capable of synthesizing dynamic contact sequences. Nevertheless, its exponential-time complexity limits its applicability to short time horizon contact sequences within small environments. In this paper, we go beyond current approaches by learning a prediction of the dynamic evolution of the robot centroidal momenta, which can then be used for quickly generating dynamically robust contact sequences for robots with arms and legs using a search-based contact planner. We demonstrate the efficiency and quality of the results of the proposed approach in a set of dynamically challenging scenarios. 
    more » « less