skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dhingra, Simran"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A series of 1,3,5,7-tetraphenyl-aza-BODIPY dyes functionalized with electron-donating or withdrawing groups at the para-positions of the phenyl rings on either the 1,7- or 3,5-positions were synthesized and characterized. The electron-donating group selected was –NH2, while the electron-withdrawing groups spanned a range of strengths, from strong (-NO2) to moderate (-NH3+) and mild (-Ndouble bondCdouble bondS). The structural modifications were strategically implemented to investigate their impact on the dyes photophysical properties. Spectroscopic studies revealed that these dyes exhibit intense absorption and emission in the near-infrared (NIR) region (678–855 nm). The photophysical properties, including molar absorptivity, fluorescence quantum yield, and Stokes shift were found to depend significantly on both the electronic nature (donating/withdrawing) and positioning (1,7- vs. 3,5-) of the substituents. Complementary computational studies provided insights into the electronic structures and excited-state dynamics, corroborating experimental observations. Time-dependent density functional theory (TD-DFT) calculations revealed that the electron density distribution and the frontier orbitals’ energies and shapes were significantly influenced by the electronic effects of the substituent groups. This study underscores the tunability of aza-BODIPY dyes through rational molecular design, enabling precise control over their optical properties for tailored NIR applications. 
    more » « less
    Free, publicly-accessible full text available January 1, 2027
  2. A near-IR BODIPY was covalently conjugated via its isothiocyanate groups to one or two Erlotinib molecules, a known tyrosine kinase inhibitor (TKI), via triethylene glycol spacers, to produce two novel BODIPY-monoTKI and BODIPY-diTKI conjugates. The ability of these conjugates to target the intracellular domain of the epidermal growth factor receptor (EGFR) was investigated using molecular modeling, surface plasma resonance (SPR), EGFR kinase binding assay, time-dependent cellular uptake, and fluorescence microscopy. While both the BODIPY-monoTKI and the BODIPY-diTKI conjugates were shown to bind to the EGFR kinase by SPR and accumulated more efficiently within human HEp2 cells that over-express EGFR than BODIPY alone, only the BODIPY-monoTKI exhibited kinase inhibition activity. This is due to the high hydrophobic character and aggregation behavior of the BODIPY-diTKI in aqueous solutions, as shown by fluorescence quenching. Furthermore, the competition of the two Erlotinibs in the diTKI conjugate for the active site of the kinase, as suggested by computational modeling, might lead to a decrease in binding relative to the monoTKI conjugate. Nevertheless, the efficient cellular uptake and intracellular localization of both conjugates with no observed cytotoxicity suggest that both could be used as near-IR fluorescent markers for cells that over-express EGFR. 
    more » « less
  3. Boron dipyrromethene (BODIPY) dyes bearing a pyridyl moiety have been used as metal ion sensors, pH sensors, fluorescence probes, and as sensitizers for phototherapy. A comparative study of the properties of the three structural isomers of meso-pyridyl-BODIPYs, their 2,6-dichloro derivatives, and their corresponding methylated cationic pyridinium-BODIPYs was conducted using spectroscopic and electrochemical methods, X-ray analyses, and TD-DFT calculations. Among the neutral derivatives, the 3Py and 4Py isomers showed the highest relative fluorescence quantum yields in organic solvents, which were further enhanced 2-4-fold via the introduction of two chlorines at the 2,6-positions. Among the cationic derivatives, the 2catPy showed the highest relative fluorescence quantum yield in organic solvents, which was further enhanced by the use of a bulky counter anion (PF6−). In water, the quantum yields were greatly reduced for all three isomers but were shown to be enhanced upon introduction of 2,6-dichloro groups. Our results indicate that 2,6-dichloro-meso-(2- and 3-pyridinium)-BODIPYs are the most promising for sensing applications. Furthermore, all pyridinium BODIPYs are highly water-soluble and display low cytotoxicity towards human HEp2 cells. 
    more » « less
  4. null (Ed.)
    Epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor (VEGFR) are two extensively studied membrane-bound receptor tyrosine kinase proteins that are frequently overexpressed in many cancers. As a result, these receptor families constitute attractive targets for imaging and therapeutic applications in the detection and treatment of cancer. This review explores the dynamic structure and structure-function relationships of these two growth factor receptors and their significance as it relates to theranostics of cancer, followed by some of the common inhibition modalities frequently employed to target EGFR and VEGFR, such as tyrosine kinase inhibitors (TKIs), antibodies, nanobodies, and peptides. A summary of the recent advances in molecular imaging techniques, including positron emission tomography (PET), single-photon emission computerized tomography (SPECT), computed tomography (CT), magnetic resonance imaging (MRI), and optical imaging (OI), and in particular, near-IR fluorescence imaging using tetrapyrrolic-based fluorophores, concludes this review. 
    more » « less