Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Climate-induced northward advance of boreal forest is expected to lessen albedo, alter carbon stocks, and replace tundra, but where and when this advance will occur remains largely unknown. Using data from 19 sites across 22 degrees of longitude along the tree line of northern Alaska, we show a stronger temporal correlation of tree ring growth with open water uncovered by retreating Arctic sea ice than with air temperature. Spatially, our results suggest that tree growth, recruitment, and range expansion are causally linked to open water through associated warmer temperatures, deeper snowpacks, and improved nutrient availability. We apply a meta-analysis to 82 circumarctic sites, finding that proportionally more tree lines have advanced where proximal to ongoing sea ice loss. Taken together, these findings underpin how and where changing sea ice conditions facilitate high-latitude forest advance.more » « less
-
This dataset includes measurements and estimated variable values from treelines in Alaka's Brooks Range mountains. It includes locations of colonists above treelines found in 2018, 2019, 2020, 2021, and 2022; forest advance rates from the 1970s to 2010s from repeat imagery; growth rates of leaders of juveniles during 2015-2020 and lateral branch growth of adults in 2019; counts of saplings; temperatures of air at 2 meters (m) and soil at 10 centimeters (cm) from 2019-2022; soil moisture in 2019; estimated snow depth in January 2020, 2021, and 2022; foliar nitrogen and phosphorous; and foliar stable isotope ratios for nitrogen (15N:14N) and carbon (13C:12C). The purpose of the dataset is to show the effect of sea ice retreat on treeline advance.more » « less
-
Abstract Unprecedented modern rates of warming are expected to advance boreal forest into Arctic tundra 1 , thereby reducing albedo 2–4 , altering carbon cycling 4 and further changing climate 1–4 , yet the patterns and processes of this biome shift remain unclear 5 . Climate warming, required for previous boreal advances 6–17 , is not sufficient by itself for modern range expansion of conifers forming forest–tundra ecotones 5,12–15,17–20 . No high-latitude population of conifers, the dominant North American Arctic treeline taxon, has previously been documented 5 advancing at rates following the last glacial maximum (LGM) 6–8 . Here we describe a population of white spruce ( Picea glauca ) advancing at post-LGM rates 7 across an Arctic basin distant from established treelines and provide evidence of mechanisms sustaining the advance. The population doubles each decade, with exponential radial growth in the main stems of individual trees correlating positively with July air temperature. Lateral branches in adults and terminal leaders in large juveniles grow almost twice as fast as those at established treelines. We conclude that surpassing temperature thresholds 1,6–17 , together with winter winds facilitating long-distance dispersal, deeper snowpack and increased soil nutrient availability promoting recruitment and growth, provides sufficient conditions for boreal forest advance. These observations enable forecast modelling with important insights into the environmental conditions converting tundra into forest.more » « less
An official website of the United States government
