skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Dickerson, John"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, we consider a setting inspired by spatial crowdsourcing platforms, where both workers and tasks arrive at different times, and each worker-task assignment yields a given reward. The key challenge is to address the uncertainty in the stochastic arrivals from both workers and the tasks. In this work, we consider a ubiquitous scenario where the arrival patterns of worker “types” and task “types” are not erratic but can be predicted from historical data. Specifically, we consider a finite time horizon T and assume that in each time-step the arrival of a worker and a task can be seen as an independent sample from two (different) distributions. Our model, called "Online Task Assignment with Two-Sided Arrival" (OTA-TSA), is a significant generalization of the classical online task-assignment problem when all the tasks are statically available. For the general case of OTA-TSA, we present an optimal non-adaptive algorithm (NADAP), which achieves a competitive ratio (CR) of at least 0.295. For a special case of OTA-TSA when the reward depends only on the worker type, we present two adaptive algorithms, which achieve CRs of at least 0.343 and 0.355, respectively. On the hardness side, we show that (1) no non-adaptive can achieve a CR larger than that of NADAP, establishing the optimality of NADAP among all non-adaptive algorithms; and (2) no (adaptive) algorithm can achieve a CR better than 0.581 (unconditionally) or 0.423 (conditionally on the benchmark linear program), respectively. All aforementioned negative results apply to even unweighted OTA-TSA when every assignment yields a uniform reward. At the heart of our analysis is a new technical tool, called "two-stage birth-death process", which is a refined notion of the classical birth-death process. We believe it may be of independent interest. Finally, we perform extensive numerical experiments on a real-world ride-share dataset collected in Chicago and a synthetic dataset, and results demonstrate the effectiveness of our proposed algorithms in practice. 
    more » « less
    Free, publicly-accessible full text available March 11, 2025
  2. Free, publicly-accessible full text available February 1, 2025
  3. Free, publicly-accessible full text available December 1, 2024
  4. Free, publicly-accessible full text available August 19, 2024
  5. Free, publicly-accessible full text available August 6, 2024
  6. Free, publicly-accessible full text available August 4, 2024
  7. Kidney exchanges allow patients with end-stage renal disease to find a lifesaving living donor by way of an organized market. However, not all patients are equally easy to match, nor are all donor organs of equal quality---some patients are matched within weeks, while others may wait for years with no match offers at all. We propose the first decision-support tool for kidney exchange that takes as input the biological features of a patient-donor pair, and returns (i) the probability of being matched prior to expiry, and (conditioned on a match outcome), (ii) the waiting time for and (iii) the organ quality of the matched transplant. This information may be used to inform medical and insurance decisions. We predict all quantities (i, ii, iii) exclusively from match records that are readily available in any kidney exchange using a quantile random forest approach. To evaluate our approach, we developed two state-of-the-art realistic simulators based on data from the United Network for Organ Sharing that sample from the training and test distribution for these learning tasks---in our application these distributions are distinct. We analyze distributional shift through a theoretical lens, and show that the two distributions converge as the kidney exchange nears steady-state. We then show that our approach produces clinically-promising estimates using simulated data. Finally, we show how our approach, in conjunction with tools from the model explainability literature, can be used to calibrate and detect bias in matching policies.

     
    more » « less