Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Improving our ability to understand and predict the dynamics of the terrestrial carbon cycle remains a pressing challenge despite a rapidly growing volume and diversity of Earth Observation data. State data assimilation represents a path forward via an iterative cycle of making process-based forecasts and then statistically reconciling these forecasts against numerous ground-based and remotely-sensed data constraints into a “reanalysis” data product that provides full spatiotemporal carbon budgets with robust uncertainty accounting. Here we report on an >100x expansion of the PEcAn+SIPNET reanalysis from 500 sites CONUS, 25 ensemble members, and 2 data constraints to 6400 sites across North America, 100 ensemble members, and 5 data constraints: GEDI and Landtrendr AGB, MODIS LAI, SoilGrids Soil C, and SMAP soil moisture. We also report on an ensemble-based machine learning (ML) downscaling to a 1km product that preserves spatial, temporal, and across-variable covariances and demonstrate the impacts of these covariances on uncertainty accounting (Fig. 1). Synergistically, we use the same ML models to assess what climate, vegetation, and soil variables explain the spatiotemporal variability in different C pools and fluxes. In addition, we review a wide range of ongoing validation activities, comparing the outputs of the reanalysis against withheld data from: Ameriflux and NEON NEE and LE; USFS Forest Inventory biomass, biomass increment, tree rings, soil C, and litter; and NEON soil C and soil respiration. Finally, we touch on ML analyses to diagnose and correct systematic biases and emulator-based recalibration efforts.more » « lessFree, publicly-accessible full text available May 28, 2026
-
Abstract This paper summarizes the open community conventions developed by the Ecological Forecasting Initiative (EFI) for the common formatting and archiving of ecological forecasts and the metadata associated with these forecasts. Such open standards are intended to promote interoperability and facilitate forecast communication, distribution, validation, and synthesis. For output files, we first describe the convention conceptually in terms of global attributes, forecast dimensions, forecasted variables, and ancillary indicator variables. We then illustrate the application of this convention to the two file formats that are currently preferred by the EFI, netCDF (network common data form), and comma‐separated values (CSV), but note that the convention is extensible to future formats. For metadata, EFI's convention identifies a subset of conventional metadata variables that are required (e.g., temporal resolution and output variables) but focuses on developing a framework for storing information about forecast uncertainty propagation, data assimilation, and model complexity, which aims to facilitate cross‐forecast synthesis. The initial application of this convention expands upon the Ecological Metadata Language (EML), a commonly used metadata standard in ecology. To facilitate community adoption, we also provide a Github repository containing a metadata validator tool and several vignettes in R and Python on how to both write and read in the EFI standard. Lastly, we provide guidance on forecast archiving, making an important distinction between short‐term dissemination and long‐term forecast archiving, while also touching on the archiving of code and workflows. Overall, the EFI convention is a living document that can continue to evolve over time through an open community process.more » « less
-
A substantial increase in predictive capacity is needed to anticipate and mitigate the widespread change in ecosystems and their services in the face of climate and biodiversity crises. In this era of accelerating change, we cannot rely on historical patterns or focus primarily on long-term projections that extend decades into the future. In this Perspective, we discuss the potential of near-term (daily to decadal) iterative ecological forecasting to improve decision-making on actionable time frames. We summarize the current status of ecological forecasting and focus on how to scale up, build on lessons from weather forecasting, and take advantage of recent technological advances. We also highlight the need to focus on equity, workforce development, and broad cross-disciplinary and non-academic partnerships.more » « lessFree, publicly-accessible full text available November 8, 2025
-
Abstract. Monitoring leaf phenology tracks the progression ofclimate change and seasonal variations in a variety of organismal andecosystem processes. Networks of finite-scale remote sensing, such as thePhenoCam network, provide valuable information on phenological state at hightemporal resolution, but they have limited coverage. Satellite-based data withlower temporal resolution have primarily been used to more broadly measurephenology (e.g., 16 d MODIS normalizeddifference vegetation index (NDVI) product). Recent versions of the GeostationaryOperational Environmental Satellites (GOES-16 and GOES-17) can monitor NDVI attemporal scales comparable to that of PhenoCam throughout most of thewestern hemisphere. Here we begin to examine the current capacity of thesenew data to measure the phenology of deciduous broadleaf forests for thefirst 2 full calendar years of data (2018 and 2019) by fittingdouble-logistic Bayesian models and comparing the transition dates of the start, middle, and end of theseason to those obtained from PhenoCam and MODIS 16 dNDVI and enhanced vegetation index (EVI) products. Compared to these MODIS products, GOES was morecorrelated with PhenoCam at the start and middle of spring but had a largerbias (3.35 ± 0.03 d later than PhenoCam) at the end of spring.Satellite-based autumn transition dates were mostly uncorrelated with thoseof PhenoCam. PhenoCam data produced significantly more certain (allp values ≤0.013) estimates of all transition dates than any of thesatellite sources did. GOES transition date uncertainties were significantlysmaller than those of MODIS EVI for all transition dates (all p values ≤0.026), but they were only smaller (based on p value <0.05) than thosefrom MODIS NDVI for the estimates of the beginning and middle of spring. GOES willimprove the monitoring of phenology at large spatial coverages and providesreal-time indicators of phenological change even when the entire springtransition period occurs within the 16 d resolution of these MODISproducts.more » « less
An official website of the United States government
