Abstract Ecological forecasting provides a powerful set of methods for predicting short‐ and long‐term change in living systems. Forecasts are now widely produced, enabling proactive management for many applied ecological problems. However, despite numerous calls for an increased emphasis on prediction in ecology, the potential for forecasting to accelerate ecological theory development remains underrealized.Here, we provide a conceptual framework describing how ecological forecasts can energize and advance ecological theory. We emphasize the many opportunities for future progress in this area through increased forecast development, comparison and synthesis.Our framework describes how a forecasting approach can shed new light on existing ecological theories while also allowing researchers to address novel questions. Through rigorous and repeated testing of hypotheses, forecasting can help to refine theories and understand their generality across systems. Meanwhile, synthesizing across forecasts allows for the development of novel theory about the relative predictability of ecological variables across forecast horizons and scales.We envision a future where forecasting is integrated as part of the toolset used in fundamental ecology. By outlining the relevance of forecasting methods to ecological theory, we aim to decrease barriers to entry and broaden the community of researchers using forecasting for fundamental ecological insight.
more »
« less
Near-term ecological forecasting for climate change action
A substantial increase in predictive capacity is needed to anticipate and mitigate the widespread change in ecosystems and their services in the face of climate and biodiversity crises. In this era of accelerating change, we cannot rely on historical patterns or focus primarily on long-term projections that extend decades into the future. In this Perspective, we discuss the potential of near-term (daily to decadal) iterative ecological forecasting to improve decision-making on actionable time frames. We summarize the current status of ecological forecasting and focus on how to scale up, build on lessons from weather forecasting, and take advantage of recent technological advances. We also highlight the need to focus on equity, workforce development, and broad cross-disciplinary and non-academic partnerships.
more »
« less
- PAR ID:
- 10559755
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Nature Portfolio
- Date Published:
- Journal Name:
- Nature Climate Change
- Volume:
- 14
- Issue:
- 12
- ISSN:
- 1758-678X
- Page Range / eLocation ID:
- 1236 to 1244
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Near‐term iterative forecasting is a powerful tool for ecological decision support and has the potential to transform our understanding of ecological predictability. However, to this point, there has been no cross‐ecosystem analysis of near‐term ecological forecasts, making it difficult to synthesize diverse research efforts and prioritize future developments for this emerging field. In this study, we analyzed 178 near‐term (≤10‐yr forecast horizon) ecological forecasting papers to understand the development and current state of near‐term ecological forecasting literature and to compare forecast accuracy across scales and variables. Our results indicated that near‐term ecological forecasting is widespread and growing: forecasts have been produced for sites on all seven continents and the rate of forecast publication is increasing over time. As forecast production has accelerated, some best practices have been proposed and application of these best practices is increasing. In particular, data publication, forecast archiving, and workflow automation have all increased significantly over time. However, adoption of proposed best practices remains low overall: for example, despite the fact that uncertainty is often cited as an essential component of an ecological forecast, only 45% of papers included uncertainty in their forecast outputs. As the use of these proposed best practices increases, near‐term ecological forecasting has the potential to make significant contributions to our understanding of forecastability across scales and variables. In this study, we found that forecastability (defined here as realized forecast accuracy) decreased in predictable patterns over 1–7 d forecast horizons. Variables that were closely related (i.e., chlorophyll and phytoplankton) displayed very similar trends in forecastability, while more distantly related variables (i.e., pollen and evapotranspiration) exhibited significantly different patterns. Increasing use of proposed best practices in ecological forecasting will allow us to examine the forecastability of additional variables and timescales in the future, providing a robust analysis of the fundamental predictability of ecological variables.more » « less
-
Abstract Ecological forecasting models play an increasingly important role for managing natural resources and assessing our fundamental knowledge of processes driving ecological dynamics. As global environmental change pushes ecosystems beyond their historical conditions, the utility of these models may depend on their transferability to novel conditions. Because species interactions can alter resource use, timing of reproduction, and other aspects of a species' realized niche, changes in biotic conditions, which can arise from community reorganization events in response to environmental change, have the potential to impact model transferability. Using a long‐term experiment on desert rodents, we assessed model transferability under novel biotic conditions to better understand the limitations of ecological forecasting. We show that ecological forecasts can be less accurate when the models generating them are transferred to novel biotic conditions and that the extent of model transferability can depend on the species being forecast. We also demonstrate the importance of incorporating uncertainty into forecast evaluation with transferred models generating less accurate and more uncertain forecasts. These results suggest that how a species perceives its competitive landscape can influence model transferability and that when uncertainties are properly accounted for, transferred models may still be appropriate for decision making. Assessing the extent of the transferability of forecasting models is a crucial step to increase our understanding of the limitations of ecological forecasts.more » « less
-
Abstract Probabilistic near‐term forecasting facilitates evaluation of model predictions against observations and is of pressing need in ecology to inform environmental decision‐making and effect societal change. Despite this imperative, many ecologists are unfamiliar with the widely used tools for evaluating probabilistic forecasts developed in other fields. We address this gap by reviewing the literature on probabilistic forecast evaluation from diverse fields including climatology, economics, and epidemiology. We present established practices for selecting evaluation data (end‐sample hold out), graphical forecast evaluation (times‐series plots with uncertainty, probability integral transform plots), quantitative evaluation using scoring rules (log, quadratic, spherical, and ranked probability scores), and comparing scores across models (skill score, Diebold–Mariano test). We cover common approaches, highlight mathematical concepts to follow, and note decision points to allow application of general principles to specific forecasting endeavors. We illustrate these approaches with an application to a long‐term rodent population time series currently used for ecological forecasting and discuss how ecology can continue to learn from and drive the cross‐disciplinary field of forecasting science.more » « less
-
Near-term, ecological forecasting with iterative model refitting and uncertainty partitioning has great promise for improving our understanding of ecological processes and the predictive skill of ecological models, but to date has been infrequently applied to predict biogeochemical fluxes. Bubble fluxes of methane (CH 4 ) from aquatic sediments to the atmosphere (ebullition) dominate freshwater greenhouse gas emissions, but it remains unknown how best to make robust near-term CH 4 ebullition predictions using models. Near-term forecasting workflows have the potential to address several current challenges in predicting CH 4 ebullition rates, including: development of models that can be applied across time horizons and ecosystems, identification of the timescales for which predictions can provide useful information, and quantification of uncertainty in predictions. To assess the capacity of near-term, iterative forecasting workflows to improve ebullition rate predictions, we developed and tested a near-term, iterative forecasting workflow of CH 4 ebullition rates in a small eutrophic reservoir throughout one open-water period. The workflow included the repeated updating of a CH 4 ebullition forecast model over time with newly-collected data via iterative model refitting. We compared the CH 4 forecasts from our workflow to both alternative forecasts generated without iterative model refitting and a persistence null model. Our forecasts with iterative model refitting estimated CH 4 ebullition rates up to 2 weeks into the future [RMSE at 1-week ahead = 0.53 and 0.48 log e (mg CH 4 m −2 d −1 ) at 2-week ahead horizons]. Forecasts with iterative model refitting outperformed forecasts without refitting and the persistence null model at both 1- and 2-week forecast horizons. Driver uncertainty and model process uncertainty contributed the most to total forecast uncertainty, suggesting that future workflow improvements should focus on improved mechanistic understanding of CH 4 models and drivers. Altogether, our study suggests that iterative forecasting improves week-to-week CH 4 ebullition predictions, provides insight into predictability of ebullition rates into the future, and identifies which sources of uncertainty are the most important contributors to the total uncertainty in CH 4 ebullition predictions.more » « less
An official website of the United States government

