skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ding, Zeyu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Differential privacy is a widely accepted formal privacy definition that allows aggregate information about a dataset to be released while controlling privacy leakage for individuals whose records appear in the data. Due to the unavoidable tension between privacy and utility, there have been many works trying to relax the requirements of differential privacy to achieve greater utility.One class of relaxation, which is gaining support outside the privacy community is embodied by the definitions of individual differential privacy (IDP) and bootstrap differential privacy (BDP). Classical differential privacy defines a set of neighboring database pairs and achieves its privacy guarantees by requiring that each pair of neighbors should be nearly indistinguishable to an attacker. The privacy definitions we study, however, aggressively reduce the set of neighboring pairs that are protected.To a non-expert, IDP and BDP can seem very appealing as they echo the same types of privacy explanations that are associated with differential privacy, and also experimentally achieve dramatically better utility. However, we show that they allow a significant portion of the dataset to be reconstructed using algorithms that have arbitrarily low privacy loss under their privacy accounting rules.With the non-expert in mind, we demonstrate these attacks using the preferred mechanisms of these privacy definitions. In particular, we design a set of queries that, when protected by these mechanisms with high noise settings (i.e., with claims of very low privacy loss), yield more precise information about the dataset than if they were not protected at all. The specific attacks here can be defeated and we give examples of countermeasures. However, the defenses are either equivalent to using differential privacy or to ad-hoc methods tailored specifically to the attack (with no guarantee that they protect against other attacks). Thus, the defenses emphasize the deficiencies of these privacy definitions. 
    more » « less
  2. null (Ed.)
    In practice, differentially private data releases are designed to support a variety of applications. A data release is fit for use if it meets target accuracy requirements for each application. In this paper, we consider the problem of answering linear queries under differential privacy subject to per-query accuracy constraints. Existing practical frameworks like the matrix mechanism do not provide such fine-grained control (they optimize total error, which allows some query answers to be more accurate than necessary, at the expense of other queries that become no longer useful). Thus, we design a fitness-for-use strategy that adds privacy-preserving Gaussian noise to query answers. The covariance structure of the noise is optimized to meet the fine-grained accuracy requirements while minimizing the cost to privacy. 
    more » « less
  3. null (Ed.)
    Differential privacy has become a de facto standard for releasing data in a privacy-preserving way. Creating a differentially private algorithm is a process that often starts with a noise-free (nonprivate) algorithm. The designer then decides where to add noise, and how much of it to add. This can be a non-trivial process – if not done carefully, the algorithm might either violate differential privacy or have low utility. In this paper, we present DPGen, a program synthesizer that takes in non-private code (without any noise) and automatically synthesizes its differentially private version (with carefully calibrated noise). Under the hood, DPGen uses novel algorithms to automatically generate a sketch program with candidate locations for noise, and then optimize privacy proof and noise scales simultaneously on the sketch program. Moreover, DPGen can synthesize sophisticated mechanisms that adaptively process queries until a specified privacy budget is exhausted. When evaluated on standard benchmarks, DPGen is able to generate differentially private mechanisms that optimize simple utility functions within 120 seconds. It is also powerful enough to synthesize adaptive privacy mechanisms. 
    more » « less
  4. null (Ed.)
    We propose CheckDP, an automated and integrated approach for proving or disproving claims that a mechanism is differentially private. CheckDP can find counterexamples for mechanisms with subtle bugs for which prior counterexample generators have failed. Furthermore, it was able to automatically generate proofs for correct mechanisms for which no formal verification was reported before. CheckDP is built on static program analysis, allowing it to be more efficient and precise in catching infrequent events than sampling based counterexample generators (which run mechanisms hundreds of thousands of times to estimate their output distribution). Moreover, its sound approach also allows automatic verification of correct mechanisms. When evaluated on standard benchmarks and newer privacy mechanisms, CheckDP generates proofs (for correct mechanisms) and counterexamples (for incorrect mechanisms) within 70 seconds without any false positives or false negatives. 
    more » « less
  5. null (Ed.)
    Noisy Max and Sparse Vector are selection algorithms for differential privacy and serve as building blocks for more complex algorithms. In this paper we show that both algorithms can release additional information for free (i.e., at no additional privacy cost). Noisy Max is used to return the approximate maximizer among a set of queries. We show that it can also release for free the noisy gap between the approximate maximizer and runner-up. This free information can improve the accuracy of certain subsequent counting queries by up to 50%. Sparse Vector is used to return a set of queries that are approximately larger than a fixed threshold. We show that it can adaptively control its privacy budget (use less budget for queries that are likely to be much larger than the threshold) in order to increase the amount of queries it can process. These results follow from a careful privacy analysis. 
    more » « less
  6. Recent work on formal verification of differential privacy shows a trend toward usability and expressiveness – generating a correctness proof of sophisticated algorithm while minimizing the annotation burden on programmers. Sometimes, combining those two requires substantial changes to program logics: one recent paper is able to verify Report Noisy Max automatically, but it involves a complex verification system using customized program logics and verifiers. In this paper, we propose a new proof technique, called shadow execution, and embed it into a language called ShadowDP. ShadowDP uses shadow execution to generate proofs of differential privacy with very few programmer annotations and without relying on customized logics and verifiers. In addition to verifying Report Noisy Max, we show that it can verify a new variant of Sparse Vector that reports the gap between some noisy query answers and the noisy threshold. Moreover, ShadowDP reduces the complexity of verification: for all of the algorithms we have evaluated, type checking and verification in total takes at most 3 seconds, while prior work takes minutes on the same algorithms. 
    more » « less