Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 25, 2025
-
Free, publicly-accessible full text available May 16, 2025
-
Abstract We present a novel photonic chip design for high bandwidth four-degree optical switches that support high-dimensional switching mechanisms with low insertion loss and low crosstalk in a low power consumption level and a short switching time. Such four-degree photonic chips can be used to build an integrated full-grid Photonic-on-Chip Network (PCN). With four distinct input/output directions, the proposed photonic chips are superior compared to the current bidirectional photonic switches, where a conventionally sizable PCN can only be constructed as a linear chain of bidirectional chips. Our four-directional photonic chips are more flexible and scalable for the design of modern optical switches, enabling the construction of multi-dimensional photonic chip networks that are widely applied for intra-chip communication networks and photonic data centers. More noticeably, our photonic networks can be self-controlling with our proposed Multi-Sample Discovery model, a deep reinforcement learning model based on Proximal Policy Optimization. On a PCN, we can optimize many criteria such as transmission loss, power consumption, and routing time, while preserving performance and scaling up the network with dynamic changes. Experiments on simulated data demonstrate the effectiveness and scalability of the proposed architectural design and optimization algorithm. Perceivable insights make the constructed architecture become the self-controlling photonic-on-chip networks.more » « less
-
Abstract BackgroundSepsis is a highly heterogeneous syndrome, which has hindered the development of effective therapies. This has prompted investigators to develop a precision medicine approach aimed at identifying biologically homogenous subgroups of patients with septic shock and critical illnesses. Transcriptomic analysis can identify subclasses derived from differences in underlying pathophysiological processes that may provide the basis for new targeted therapies. The goal of this study was to elucidate pathophysiological pathways and identify pediatric septic shock subclasses based on whole blood RNA expression profiles. MethodsThe subjects were critically ill children with cardiopulmonary failure who were a part of a prospective randomized insulin titration trial to treat hyperglycemia. Genome-wide expression profiling was conducted using RNA sequencing from whole blood samples obtained from 46 children with septic shock and 52 mechanically ventilated noninfected controls without shock. Patients with septic shock were allocated to subclasses based on hierarchical clustering of gene expression profiles, and we then compared clinical characteristics, plasma inflammatory markers, cell compositions using GEDIT, and immune repertoires using Imrep between the two subclasses. ResultsPatients with septic shock depicted alterations in innate and adaptive immune pathways. Among patients with septic shock, we identified two subtypes based on gene expression patterns. Compared with Subclass 2, Subclass 1 was characterized by upregulation of innate immunity pathways and downregulation of adaptive immunity pathways. Subclass 1 had significantly worse clinical outcomes despite the two classes having similar illness severity on initial clinical presentation. Subclass 1 had elevated levels of plasma inflammatory cytokines and endothelial injury biomarkers and demonstrated decreased percentages of CD4 T cells and B cells and less diverse T cell receptor repertoires. ConclusionsTwo subclasses of pediatric septic shock patients were discovered through genome-wide expression profiling based on whole blood RNA sequencing with major biological and clinical differences.Trial RegistrationThis is a secondary analysis of data generated as part of the observational CAF-PINT ancillary of the HALF-PINT study (NCT01565941). Registered March 29, 2012.more » « less