skip to main content

Search for: All records

Creators/Authors contains: "Do, Tuan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Seagroves, Scott ; Barnes, Austin ; Metevier, Anne J. ; Porter, Jason ; Hunter, Lisa (Ed.)
    The Institute for Scientist and Engineer Educators (ISEE) Professional Development Program (PDP) has led to the generation of several activities geared toward training in astronomical instru-mentation. These include activities developed for the Center for Adaptive Optics summer school and the AstroTech Instrumentation Summer School. The goal of these activities has been to provide the participants with hands-on experience to convey challenging concepts in instrumentation. The inclusion of practices from PDP led to activities that prioritized inquiry-based approaches over the more traditional formulaic lab-based training and activities. Our panel will review the design of these activities and discuss approaches that increase the likelihood of achieving the learning goals. We will also discuss ways in which these activities can help encourage students with little previous experience in instrumentation to consider additional studies in instrumentation. Finally, we will reflect on the importance of facilitators for these activities and the role PDP plays in training facilitators.
    Free, publicly-accessible full text available October 1, 2023
  2. Abstract

    We report the first star formation history study of the Milky Ways nuclear star cluster (NSC), which includes observational constraints from a large sample of stellar metallicity measurements. These metallicity measurements were obtained from recent surveys from Gemini and the Very Large Telescope of 770 late-type stars within the central 1.5 pc. These metallicity measurements, along with photometry and spectroscopically derived temperatures, are forward modeled with a Bayesian inference approach. Including metallicity measurements improves the overall fit quality, as the low-temperature red giants that were previously difficult to constrain are now accounted for, and the best fit favors a two-component model. The dominant component contains 93% ± 3% of the mass, is metal-rich ([M/H]¯0.45), and has an age of52+3Gyr, which is ∼3 Gyr younger than earlier studies with fixed (solar) metallicity; this younger age challenges coevolutionary models in which the NSC and supermassive black holes formed simultaneously at early times. The minor population component has low metallicity ([M/H]¯1.1) and contains ∼7% of the stellar mass. The age of the minor component is uncertain (0.1–5 Gyr old).more »Using the estimated parameters, we infer the following NSC stellar remnant population (with ∼18% uncertainty): 1.5 × 105neutron stars, 2.5 × 105stellar-mass black holes (BHs), and 2.2 × 104BH–BH binaries. These predictions result in 2–4 times fewer neutron stars compared to earlier predictions that assume solar metallicity, introducing a possible new path to understand the so-called “missing-pulsar problem”. Finally, we present updated predictions for the BH–BH merger rates (0.01–3 Gpc−3yr−1).

    « less
  3. Schmidt, Dirk ; Schreiber, Laura ; Vernet, Elise (Ed.)
    Free, publicly-accessible full text available August 29, 2023
  4. Schmidt, Dirk ; Schreiber, Laura ; Vernet, Elise (Ed.)
    We present evaluations of the Keck Telescope’s adaptive optics (AO) performance on Milky Way Galactic center imaging and spectroscopic observations using three different AO setups: laser guide star with infrared (IR) tip-tilt correction, laser guide star with visible tip-tilt correction, and infrared natural guide star with a pyramid wavefront sensor. Observations of the Galactic Center can utilize a bright IR tip-tilt star (K′ = 7.4 mag) for corrections, which is over 10 arcseconds closer than the optical tip-tilt star. The proximity of this IR star enables the comparison of the aforementioned AO configurations. We present performance metrics such as full-width-at-half-maximum (FWHM), Strehl ratio, and spectral signal to noise ratio and their relations to atmospheric seeing conditions. The IR tip-tilt star decreases the median spatial FWHM by 31% in imaging data and 30% in spectroscopy. Median Strehl for imaging data improves by 24%. Additionally, the IR star removes the seeing dependence from differential tip-tilt error in both imaging and spectroscopic data. This evaluation provides important work for ongoing upgrades to AO systems, such as the Keck All sky Precision Adaptive Optics (KAPA) upgrade on the Keck I Telescope, and the development of new AO systems for extremely large telescopes.
    Free, publicly-accessible full text available September 7, 2023
  5. Free, publicly-accessible full text available July 1, 2023
  6. Abstract While the Milky Way nuclear star cluster (MW NSC) has been studied extensively, how it formed is uncertain. Studies have shown it contains a solar and supersolar metallicity population that may have formed in situ, along with a subsolar-metallicity population that may have formed via mergers of globular clusters and dwarf galaxies. Stellar abundance measurements are critical to differentiate between formation scenarios. We present new measurements of [M/H] and α -element abundances [ α /Fe] of two subsolar-metallicity stars in the Galactic center. These observations were taken with the adaptive-optics-assisted high-resolution ( R = 24,000) spectrograph NIRSPEC in the K band (1.8–2.6 micron). These are the first α -element abundance measurements of subsolar-metallicity stars in the MW NSC. We measure [M/H] = − 0.59 ± 0.11, [ α /Fe] = 0.05 ± 0.15 and [M/H] = − 0.81 ± 0.12, [ α /Fe] = 0.15 ± 0.16 for the two stars at the Galactic center; the uncertainties are dominated by systematic uncertainties in the spectral templates. The stars have an [ α /Fe] in between the [ α /Fe] of globular clusters and dwarf galaxies at similar [M/H] values. Their abundances are very different than the bulk of themore »stars in the nuclear star cluster. These results indicate that the subsolar-metallicity population in the MW NSC likely originated from infalling dwarf galaxies or globular clusters and are unlikely to have formed in situ.« less
  7. Free, publicly-accessible full text available April 1, 2023
  8. Schmidt, Dirk ; Schreiber, Laura ; Vernet, Elise (Ed.)
    We present the status and plans for the Keck All sky Precision Adaptive optics (KAPA) program. KAPA includes (1) an upgrade to the Keck I laser guide star adaptive optics (AO) facility to improve image quality and sky coverage, (2) the inclusion of AO telemetry-based point spread function estimates with all science exposures, (3) four key science programs, and (4) an educational component focused on broadening the participation of women and underrepresented groups in instrumentation. For this conference we focus on the KAPA upgrades since the 2020 SPIE proceedings1 including implementation of a laser asterism generator, wavefront sensor, real-time controller, asterism and turbulence simulators, the laser tomography system itself along with new operations software and science tools, and modifications to an existing near-infrared tip-tilt sensor to support multiple natural guide star and focus measurements. We will also report on the results of daytime and on-sky calibrations and testing.
    Free, publicly-accessible full text available August 29, 2023
  9. ABSTRACT The hyper-velocity star S5-HVS1, ejected 5 Myr ago from the Galactic Centre at 1800 km s−1, was most likely produced by tidal break-up of a tight binary by the supermassive black hole SgrA*. Taking a Monte Carlo approach, we show that the former companion of S5-HVS1 was likely a main-sequence star between 1.2 and 6 M⊙ and was captured into a highly eccentric orbit with pericentre distance in the range of 1–10 au and semimajor axis about 103 au. We then explore the fate of the captured star. We find that the heat deposited by tidally excited stellar oscillation modes leads to runaway disruption if the pericentre distance is smaller than about $3\rm \, au$. Over the past 5 Myr, its angular momentum has been significantly modified by orbital relaxation, which may stochastically drive the pericentre inwards below $3\rm \, au$ and cause tidal disruption. We find an overall survival probability in the range 5 per cent to 50 per cent, depending on the local relaxation time in the close environment of the captured star, and the initial pericentre at capture. The pericentre distance of the surviving star has migrated to 10–100 au, making it potentially the most extreme member of the S-star cluster. From the ejection rate ofmore »S5-HVS1-like stars, we estimate that there may currently be a few stars in such highly eccentric orbits. They should be detectable (typically $K_{\rm s}\lesssim 18.5\,$ mag) by the GRAVITY instrument and by future Extremely Large Telescopes and hence provide an extraordinary probe of the spin of SgrA*.« less