skip to main content

Search for: All records

Creators/Authors contains: "Dong, Subo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.


    We present the volumetric rates and luminosity functions (LFs) of Type Ia supernovae (SNe Ia) from the V-band All-Sky Automated Survey for Supernovae (ASAS-SN) catalogues spanning discovery dates from UTC 2014 January 26 to UTC 2017 December 29. Our standard sample consists of 404 SNe Ia with $m_{\mathrm{{\it V},peak}} \lt 17\, \mathrm{mag}$ and Galactic latitude |b| > 15°. Our results are both statistically more precise and systematically more robust than previous studies due to the large sample size and high spectroscopic completeness. We make completeness corrections based on both the apparent and absolute magnitudes by simulating the detection of SNe Ia in ASAS-SN light curves. We find a total volumetric rate for all subtypes of $R_{\mathrm{tot}} = 2.28^{+0.20}_{-0.20} \times 10^{4}\, \mathrm{yr}^{-1}\, \mathrm{Gpc}^{-3}\, h^{3}_{70}$ for $M_{\mathrm{{\it V},peak}} \lt -16.5\, \mathrm{mag}$ ($R_{\mathrm{tot}} = 1.91^{+0.12}_{-0.12} \times 10^{4}\, \mathrm{yr}^{-1}\, \mathrm{Gpc}^{-3}\, h^{3}_{70}$ for $M_{\mathrm{{\it V},peak}} \lt -17.5\, \mathrm{mag}$) at the median redshift of our sample, zmed = 0.024. This is in agreement (1σ) with the local volumetric rates found by previous studies. We also compile LFs for the entire sample as well as for subtypes of SNe Ia for the first time. The major subtypes with more than one SN include Ia-91bg, Ia-91T, Ia-CSM, and Ia-03fg with total rates of $R_{\mathrm{Ia-91bg}} = 1.4^{+0.5}_{-0.5} \times 10^{3}\, \mathrm{yr}^{-1}\, \mathrm{Gpc}^{-3}\, h^{3}_{70}$, $R_{\mathrm{Ia-91T}} = 8.5^{+1.6}_{-1.7} \times 10^{2}\, \mathrm{yr}^{-1}\, \mathrm{Gpc}^{-3}\, h^{3}_{70}$, $R_{\mathrm{Ia-CSM}} = 10^{+7}_{-7}\, \mathrm{yr}^{-1}\, \mathrm{Gpc}^{-3}\, h^{3}_{70}$, and $R_{\mathrm{Ia-03fg}} = 30^{+20}_{-20}\, \mathrm{yr}^{-1}\, \mathrm{Gpc}^{-3}\, h^{3}_{70}$, respectively. We estimate a mean host extinction of $E(V-r) \approx 0.2\, \mathrm{mag}$ based on the shift between our V band and the Zwicky Transient Facility r-band LFs.

    more » « less

    The All-Sky Automated Survey for Supernovae (ASAS-SN) is the first optical survey to monitor the entire sky, currently with a cadence of ≲ 24 h down to g ≲ 18.5 mag. ASAS-SN has routinely operated since 2013, collecting ∼ 2 000 to over 7 500 epochs of V- and g-band observations per field to date. This work illustrates the first analysis of ASAS-SN’s newer, deeper, and higher cadence g-band data. From an input source list of ∼55 million isolated sources with g < 18 mag, we identified 1.5 × 106 variable star candidates using a random forest (RF) classifier trained on features derived from Gaia, 2MASS, and AllWISE. Using ASAS-SN g-band light curves, and an updated RF classifier augmented with data from Citizen ASAS-SN, we classified the candidate variables into eight broad variability types. We present a catalogue of ∼116 000 new variable stars with high-classification probabilities, including ∼111 000 periodic variables and ∼5 000 irregular variables. We also recovered ∼263 000 known variable stars.

    more » « less
  3. ABSTRACT We present the observations and analysis of a high-magnification microlensing planetary event, KMT-2022-BLG-0440, for which the weak and short-lived planetary signal was covered by both the KMTNet survey and follow-up observations. The binary-lens models with a central caustic provide the best fits, with a planet/host mass ratio, q = 0.75–1.00 × 10−4 at 1σ. The binary-lens models with a resonant caustic and a brown-dwarf mass ratio are both excluded by Δχ2 > 70. The binary-source model can fit the anomaly well but is rejected by the ‘colour argument’ on the second source. From Bayesian analyses, it is estimated that the host star is likely a K or M dwarf located in the Galactic disc, the planet probably has a Neptune-mass, and the projected planet-host separation is $1.9^{+0.6}_{-0.7}$ or $4.6^{+1.4}_{-1.7}$  au, subject to the close/wide degeneracy. This is the third q < 10−4 planet from a high-magnification planetary signal (A ≳ 65). Together with another such planet, KMT-2021-BLG-0171Lb, the ongoing follow-up program for the KMTNet high-magnification events has demonstrated its ability to detect high-magnification planetary signals for q < 10−4 planets, which are challenging for the current microlensing surveys. 
    more » « less
  4. Abstract

    Using data from the Complete Nearby (redshiftzhost< 0.02) sample of Type Ia Supernovae (CNIa0.02), we find a linear relation between two parameters derived from theBVcolor curves of Type Ia supernovae: thecolor stretchsBVand the rising color slopes0*(BV)after the peak, and this relation applies to the full range ofsBV. ThesBVparameter is known to be tightly correlated with the peak luminosity, especially forfast decliners(dim Type Ia supernovae), and the luminosity correlation withsBVis markedly better than with the classic light-curve width parameters such as Δm15(B). Thus, our new linear relation can be used to infer peak luminosity froms0*. UnlikesBV(or Δm15(B)), the measurement ofs0*(BV)does not rely on a well-determined time of light-curve peak or color maximum, making it less demanding on the light-curve coverage than past approaches.

    more » « less
  5. null (Ed.)
    ABSTRACT The All-Sky Automated Survey for Supernovae provides long baseline (∼4 yr) V-band light curves for sources brighter than V≲ 17 mag across the whole sky. We produced V-band light curves for a total of ∼61.5 million sources and systematically searched these sources for variability. We identified ∼426 000 variables, including ∼219 000 new discoveries. Most (${\sim }74{ per\ cent}$) of our discoveries are in the Southern hemisphere. Here, we use spectroscopic information from LAMOST, GALAH, RAVE, and APOGEE to study the physical and chemical properties of these variables. We find that metal-poor eclipsing binaries have orbital periods that are shorter than metal-rich systems at fixed temperature. We identified rotational variables on the main-sequence, red giant branch, and the red clump. A substantial fraction (${\gtrsim }80{ per\ cent}$) of the rotating giants have large $v$rot or large near-ultraviolet excesses also indicative of fast rotation. The rotational variables have unusual abundances suggestive of analysis problems. Semiregular variables tend to be lower metallicity ($\rm [Fe/H]{\sim }-0.5$) than most giant stars. We find that the APOGEE DR16 temperatures of oxygen-rich semiregular variables are strongly correlated with the WRP − WJK colour index for $\rm T_{eff}\lesssim 3800$ K. Using abundance measurements from APOGEE DR16, we find evidence for Mg and N enrichment in the semiregular variables. We find that the Aluminum abundances of the semiregular variables are strongly correlated with the pulsation period, where the variables with $\rm P\gtrsim 60$ d are significantly depleted in Al. 
    more » « less
  6. null (Ed.)
  7. Aims. With the aim of interpreting anomalous lensing events with no suggested models, we conducted a project of reinvestigating microlensing data collected in and before the 2019 season. In this work, we report a multi-planet system, OGLE-2019-BLG-0468L, that was found as a result of this project. Methods. The light curve of the lensing event OGLE-2019-BLG-0468, which consists of three distinctive anomaly features, could not be explained by the usual binary-lens or binary-source interpretations. We find a solution that explains all anomaly features with a triple-lens interpretation, in which the lens is composed of two planets and their host, making the lens the fourth multi-planet system securely found by microlensing. Results. The two planets have masses of ~3.4  M J and ~10.2  M J , and they are orbiting around a G-type star with a mass of ~0.9  M ⊙ and a distance of ~4.4 kpc. The host of the planets is most likely responsible for the light of the baseline object, although the possibility of the host being a companion to the baseline object cannot be ruled out. 
    more » « less
  8. Abstract

    We present observations of the extremely luminous but ambiguous nuclear transient (ANT) ASASSN-17jz, spanning roughly 1200 days of the object’s evolution. ASASSN-17jz was discovered by the All-Sky Automated Survey for Supernovae (ASAS-SN) in the galaxy SDSS J171955.84+414049.4 on UT 2017 July 27 at a redshift ofz= 0.1641. The transient peaked at an absoluteB-band magnitude ofMB,peak= −22.81, corresponding to a bolometric luminosity ofLbol,peak= 8.3 × 1044erg s−1, and exhibited late-time ultraviolet emission that was still ongoing in our latest observations. Integrating the full light curve gives a total emitted energy ofEtot= (1.36 ±0.08) × 1052erg, with (0.80 ± 0.02) × 1052erg of this emitted within 200 days of peak light. This late-time ultraviolet emission is accompanied by increasing X-ray emission that becomes softer as it brightens. ASASSN-17jz exhibited a large number of spectral emission lines most commonly seen in active galactic nuclei (AGNs) with little evidence of evolution. It also showed transient Balmer features, which became fainter and broader over time, and are still being detected >1000 days after peak brightness. We consider various physical scenarios for the origin of the transient, including supernovae (SNe), tidal disruption events, AGN outbursts, and ANTs. We find that the most likely explanation is that ASASSN-17jz was a SN IIn occurring in or near the disk of an existing AGN, and that the late-time emission is caused by the AGN transitioning to a more active state.

    more » « less

    We catalogue the 443 bright supernovae (SNe) discovered by the All-Sky Automated Survey for Supernovae (ASAS-SN) in 2018−2020 along with the 519 SNe recovered by ASAS-SN and 516 additional mpeak ≤ 18 mag SNe missed by ASAS-SN. Our statistical analysis focuses primarily on the 984 SNe discovered or recovered in ASAS-SN g-band observations. The complete sample of 2427 ASAS-SN SNe includes earlier V-band samples and unrecovered SNe. For each SN, we identify the host galaxy, its UV to mid-IR photometry, and the SN’s offset from the centre of the host. Updated peak magnitudes, redshifts, spectral classifications, and host galaxy identifications supersede earlier results. With the increase of the limiting magnitude to g ≤ 18 mag, the ASAS-SN sample is nearly complete up to mpeak = 16.7 mag and is 90 per cent complete for mpeak ≤ 17.0 mag. This is an increase from the V-band sample, where it was roughly complete up to mpeak = 16.2 mag and 70 per cent complete for mpeak ≤ 17.0 mag.

    more » « less
  10. null (Ed.)
    ABSTRACT ASASSN-18am/SN 2018gk is a newly discovered member of the rare group of luminous, hydrogen-rich supernovae (SNe) with a peak absolute magnitude of MV ≈ −20 mag that is in between normal core-collapse SNe and superluminous SNe. These SNe show no prominent spectroscopic signatures of ejecta interacting with circumstellar material (CSM), and their powering mechanism is debated. ASASSN-18am declines extremely rapidly for a Type II SN, with a photospheric-phase decline rate of ∼6.0 mag (100 d)−1. Owing to the weakening of H i and the appearance of He i in its later phases, ASASSN-18am is spectroscopically a Type IIb SN with a partially stripped envelope. However, its photometric and spectroscopic evolution shows significant differences from typical SNe IIb. Using a radiative diffusion model, we find that the light curve requires a high synthesized 56Ni mass $M_{\rm Ni} \sim 0.4\, \rm {M_{\odot }}$ and ejecta with high kinetic energy Ekin = (7–10) × 1051 erg. Introducing a magnetar central engine still requires $M_{\rm Ni} \sim 0.3\, \rm {M_{\odot }}$ and Ekin = 3 × 1051 erg. The high 56Ni mass is consistent with strong iron-group nebular lines in its spectra, which are also similar to several SNe Ic-BL with high 56Ni yields. The earliest spectrum shows ‘flash ionization’ features, from which we estimate a mass-loss rate of $\dot{M}\approx 2\times 10^{-4} \, \rm \rm {M_{\odot }}\,yr^{-1}$. This wind density is too low to power the luminous light curve by ejecta–CSM interaction. We measure expansion velocities as high as 17 000 $\rm {\, km\, s^{-1}}$ for Hα, which is remarkably high compared to other SNe II. We estimate an oxygen core mass of 1.8–3.4 M⊙ using the [O i] luminosity measured from a nebular-phase spectrum, implying a progenitor with a zero-age main-sequence mass of 19–26 M⊙. 
    more » « less