Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Graph Neural Networks (GNNs) have been increasingly deployed in a plethora of applications. However, the graph data used for training may contain sensitive personal information of the involved individuals. Once trained, GNNs typically encode such information in their learnable parameters. As a consequence, privacy leakage may happen when the trained GNNs are deployed and exposed to potential attackers. Facing such a threat, machine unlearning for GNNs has become an emerging technique that aims to remove certain personal information from a trained GNN. Among these techniques, certified unlearning stands out, as it provides a solid theoretical guarantee of the information removal effectiveness. Nevertheless, most of the existing certified unlearning methods for GNNs are only designed to handle node and edge unlearning requests. Meanwhile, these approaches are usually tailored for either a specific design of GNN or a specially designed training objective. These disadvantages significantly jeopardize their flexibility. In this paper, we propose a principled framework named IDEA to achieve flexible and certified unlearning for GNNs. Specifically, we first instantiate four types of unlearning requests on graphs, and then we propose an approximation approach to flexibly handle these unlearning requests over diverse GNNs. We further provide theoretical guarantee of the effectiveness for the proposed approach as a certification. Different from existing alternatives, IDEA is not designed for any specific GNNs or optimization objectives to perform certified unlearning, and thus can be easily generalized. Extensive experiments on real-world datasets demonstrate the superiority of IDEA in multiple key perspectives.more » « lessFree, publicly-accessible full text available August 24, 2025
-
Large Language Models (LLMs) have shown unprecedented performance in various real-world applications. However, they are known to generate factually inaccurate outputs, a.k.a. the hallucination problem. In recent years, incorporating external knowledge extracted from Knowledge Graphs (KGs) has become a promising strategy to improve the factual accuracy of LLM-generated outputs. Nevertheless, most existing explorations rely on LLMs themselves to perform KG knowledge extraction, which is highly inflexible as LLMs can only provide binary judgment on whether a certain knowledge (e.g., a knowledge path in KG) should be used. In addition, LLMs tend to pick only knowledge with direct semantic relationship with the input text, while potentially useful knowledge with indirect semantics can be ignored. In this work, we propose a principled framework KELP with three stages to handle the above problems. Specifically, KELP is able to achieve finer granularity of flexible knowledge extraction by generating scores for knowledge paths with input texts via latent semantic matching. Meanwhile, knowledge paths with indirect semantic relationships with the input text can also be considered via trained encoding between the selected paths in KG and the input text. Experiments on real-world datasets validate the effectiveness of KELP.more » « lessFree, publicly-accessible full text available August 11, 2025
-
In the field of machine unlearning, certified unlearning has been extensively studied in convex machine learning models due to its high efficiency and strong theoretical guarantees. However, its application to deep neural networks (DNNs), known for their highly nonconvex nature, still poses challenges. To bridge the gap between certified unlearning and DNNs, we propose several simple techniques to extend certified unlearning methods to nonconvex objectives. To reduce the time complexity, we develop an efficient computation method by inverse Hessian approximation without compromising certification guarantees. In addition, we extend our discussion of certification to nonconvergence training and sequential unlearning, considering that real-world users can send unlearning requests at different time points. Extensive experiments on three real-world datasets demonstrate the efficacy of our method and the advantages of certified unlearning in DNNs.more » « lessFree, publicly-accessible full text available July 21, 2025
-
The problem of few-shot graph classification targets at assigning class labels for graph samples, where only limited labeled graphs are provided for each class. To solve the problem brought by label scarcity, recent studies have proposed to adopt the prevalent few-shot learning framework to achieve fast adaptations to graph classes with limited labeled graphs. In particular, these studies typically propose to accumulate meta-knowledge across a large number of meta-training tasks, and then generalize such meta-knowledge to meta-test tasks sampled from a disjoint class set. Nevertheless, existing studies generally ignore the crucial task correlations among meta-training tasks and treat them independently. In fact, such task correlations can help promote the model generalization to meta-test tasks and result in better classification performance. On the other hand, it remains challenging to capture and utilize task correlations due to the complex components and interactions in meta-training tasks. To deal with this, we propose a novel few-shot graph classification framework FAITH to capture task correlations via learning a hierarchical task structure at different granularities. We further propose a task-specific classifier to incorporate the learned task correlations into the few-shot graph classification process. Moreover, we derive FAITH+, a variant of FAITH that can improve the sampling process for the hierarchical task structure. The extensive experiments on four prevalent graph datasets further demonstrate the superiority of FAITH and FAITH+ over other state-of-the-art baselines.
Free, publicly-accessible full text available April 30, 2025 -
Graph-structured data is ubiquitous among a plethora of real-world applications. However, as graph learning algorithms have been increasingly deployed to help decision-making, there has been rising societal concern in the bias these algorithms may exhibit. In certain high-stake decision-making scenarios, the decisions made may be life-changing for the involved individuals. Accordingly, abundant explorations have been made to mitigate the bias for graph learning algorithms in recent years. However, there still lacks a library to collectively consolidate existing debiasing techniques and help practitioners to easily perform bias mitigation for graph learning algorithms. In this paper, we present PyGDebias, an open-source Python library for bias mitigation in graph learning algorithms. As the first comprehensive library of its kind, PyGDebias covers 13 popular debiasing methods under common fairness notions together with 26 commonly used graph datasets. In addition, PyGDebias also comes with comprehensive performance benchmarks and well-documented API designs for both researchers and practitioners. To foster convenient accessibility, PyGDebias is released under a permissive BSD-license together with performance benchmarks, API documentation, and use examples at https://github.com/yushundong/PyGDebias.more » « lessFree, publicly-accessible full text available May 13, 2025
-
Free, publicly-accessible full text available January 25, 2025
-
Self-supervised learning with masked autoencoders has recently gained popularity for its ability to produce effective image or textual representations, which can be applied to various downstream tasks without retraining. However, we observe that the current masked autoencoder models lack good generalization ability on graph data. To tackle this issue, we propose a novel graph masked autoencoder framework called GiGaMAE. Different from existing masked autoencoders that learn node presentations by explicitly reconstructing the original graph components (e.g., features or edges), in this paper, we propose to collaboratively reconstruct informative and integrated latent embeddings. By considering embeddings encompassing graph topology and attribute information as reconstruction targets, our model could capture more generalized and comprehensive knowledge. Furthermore, we introduce a mutual information based reconstruction loss that enables the effective reconstruction of multiple targets. This learning objective allows us to differentiate between the exclusive knowledge learned from a single target and common knowledge shared by multiple targets. We evaluate our method on three downstream tasks with seven datasets as benchmarks. Extensive experiments demonstrate the superiority of GiGaMAE against state-of-the-art baselines. We hope our results will shed light on the design of foundation models on graph-structured data. Our code is available at: https://github.com/sycny/GiGaMAE.more » « less
-
In recent years, neural models have been repeatedly touted to exhibit state-of-the-art performance in recommendation. Nevertheless, multiple recent studies have revealed that the reported state-of-the-art results of many neural recommendation models cannot be reliably replicated. A primary reason is that existing evaluations are performed under various inconsistent protocols. Correspondingly, these replicability issues make it difficult to understand how much benefit we can actually gain from these neural models. It then becomes clear that a fair and comprehensive performance comparison between traditional and neural models is needed. Motivated by these issues, we perform a large-scale, systematic study to compare recent neural recommendation models against traditional ones in top-n recommendation from implicit data. We propose a set of evaluation strategies for measuring memorization performance, generalization performance, and subgroup-specific performance of recommendation models. We conduct extensive experiments with 13 popular recommendation models (including two neural models and 11 traditional ones as baselines) on nine commonly used datasets. Our experiments demonstrate that even with extensive hyper-parameter searches, neural models do not dominate traditional models in all aspects, e.g., they fare worse in terms of average HitRate. We further find that there are areas where neural models seem to outperform non-neural models, for example, in recommendation diversity and robustness between different subgroups of users and items. Our work illuminates the relative advantages and disadvantages of neural models in recommendation and is therefore an important step towards building better recommender systems.more » « less
-
Graph Neural Networks (GNNs) have emerged as the leading paradigm for solving graph analytical problems in various real-world applications. Nevertheless, GNNs could potentially render biased predictions towards certain demographic subgroups. Understanding how the bias in predictions arises is critical, as it guides the design of GNN debiasing mechanisms. However, most existing works overwhelmingly focus on GNN debiasing, but fall short on explaining how such bias is induced. In this paper, we study a novel problem of interpreting GNN unfairness through attributing it to the influence of training nodes. Specifically, we propose a novel strategy named Probabilistic Distribution Disparity (PDD) to measure the bias exhibited in GNNs, and develop an algorithm to efficiently estimate the influence of each training node on such bias. We verify the validity of PDD and the effectiveness of influence estimation through experiments on real-world datasets. Finally, we also demonstrate how the proposed framework could be used for debiasing GNNs. Open-source code can be found at https://github.com/yushundong/BIND.more » « less