skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 24, 2026

Title: Graph Neural Networks Are More Than Filters: Revisiting and Benchmarking from A Spectral Perspective
Graph Neural Networks (GNNs) have achieved remarkable success in various graph-based learning tasks. While their performance is often attributed to the powerful neighborhood aggregation mechanism, recent studies suggest that other components such as non-linear layers may also significantly affecting how GNNs process the input graph data in the spectral domain. Such evidence challenges the prevalent opinion that neighborhood aggregation mechanisms dominate the behavioral characteristics of GNNs in the spectral domain. To demystify such a conflict, this paper introduces a comprehensive benchmark to measure and evaluate GNNs' capability in capturing and leveraging the information encoded in different frequency components of the input graph data. Specifically, we first conduct an exploratory study demonstrating that GNNs can flexibly yield outputs with diverse frequency components even when certain frequencies are absent or filtered out from the input graph data. We then formulate a novel research problem of measuring and benchmarking the performance of GNNs from a spectral perspective. To take an initial step towards a comprehensive benchmark, we design an evaluation protocol supported by comprehensive theoretical analysis. Finally, we introduce a comprehensive benchmark on real-world datasets, revealing insights that challenge prevalent opinions from a spectral perspective. We believe that our findings will open new avenues for future advancements in this area.  more » « less
Award ID(s):
2411248 2223769 2228534 2154962 2144209 2006844
PAR ID:
10612761
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
International Conference on Learning Representations
Date Published:
Format(s):
Medium: X
Location:
Singapore
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Graph Neural Networks (GNNs) have been shown to be powerful in a wide range of graph-related tasks. While there exists various GNN models, a critical common ingredient is neighborhood aggregation, where the embedding of each node is updated by referring to the embedding of its neighbors. This paper aims to provide a better understanding of this mechanisms by asking the following question: Is neighborhood aggregation always necessary and beneficial? In short, the answer is no. We carve out two conditions under which neighborhood aggregation is not helpful: (1) when a node's neighbors are highly dissimilar and (2) when a node's embedding is already similar with that of its neighbors. We propose novel metrics that quantitatively measure these two circumstances and integrate them into an Adaptive-layer module. Our experiments show that allowing for node-specific aggregation degrees have significant advantage over current GNNs. 
    more » « less
  2. Deep learning’s performance has been extensively recognized recently. Graph neural networks (GNNs) are designed to deal with graph-structural data that classical deep learning does not easily manage. Since most GNNs were created using distinct theories, direct comparisons are impossible. Prior research has primarily concentrated on categorizing existing models, with little attention paid to their intrinsic connections. The purpose of this study is to establish a unified framework that integrates GNNs based on spectral graph and approximation theory. The framework incorporates a strong integration between spatial- and spectral-based GNNs while tightly associating approaches that exist within each respective domain. 
    more » « less
  3. We introduce Hyperdimensional Graph Learner (HDGL), a novel method for node classification and link prediction in graphs. HDGL maps node features into a very high-dimensional space (hyperdimensional or HD space for short) using the injectivity property of node representations in a family of Graph Neural Networks (GNNs) and then uses HD operators such as bundling and binding to aggregate information from the local neighborhood of each node yielding latent node representations that can support both node classification and link prediction tasks. HDGL, unlike GNNs that rely on computationally expensive iterative optimization and hyperparameter tuning, requires only a single pass through the data set. We report results of experiments using widely used benchmark datasets which demonstrate that, on the node classification task, HDGL achieves accuracy that is competitive with that of the state-of-the-art GNN methods at substantially reduced computational cost; and on the link prediction task, HDGL matches the performance of DeepWalk and related methods, although it falls short of computationally demanding state-of-the-art GNNs. 
    more » « less
  4. There has been significant progress in improving the performance of graph neural networks (GNNs) through enhancements in graph data, model architecture design, and training strategies. For fairness in graphs, recent studies achieve fair representations and predictions through either graph data pre-processing (e.g., node feature masking, and topology rewiring) or fair training strategies (e.g., regularization, adversarial debiasing, and fair contrastive learning). How to achieve fairness in graphs from the model architecture perspective is less explored. More importantly, GNNs exhibit worse fairness performance compared to multilayer perception since their model architecture (i.e., neighbor aggregation) amplifies biases. To this end, we aim to achieve fairness via a new GNN architecture. We propose Fair Message Passing (FMP) designed within a unified optimization framework for GNNs. Notably, FMP explicitly renders sensitive attribute usage in forward propagation for node classification task using cross-entropy loss without data pre-processing. In FMP, the aggregation is first adopted to utilize neighbors' information and then the bias mitigation step explicitly pushes demographic group node presentation centers together.In this way, FMP scheme can aggregate useful information from neighbors and mitigate bias to achieve better fairness and prediction tradeoff performance. Experiments on node classification tasks demonstrate that the proposed FMP outperforms several baselines in terms of fairness and accuracy on three real-world datasets. The code is available at https://github.com/zhimengj0326/FMP. 
    more » « less
  5. Transfer learning on graphs drawn from varied distributions (domains) is in great demand across many applications. Emerging methods attempt to learn domain-invariant representations using graph neural networks (GNNs), yet the empirical performances vary and the theoretical foundation is limited. This paper aims at designing theory-grounded algorithms for graph domain adaptation (GDA). (i) As the first attempt, we derive a model-based GDA bound closely related to two GNN spectral properties: spectral smoothness (SS) and maximum frequency response (MFR). This is achieved by cross-pollinating between the OT-based (optimal transport) DA and graph filter theories. (ii) Inspired by the theoretical results, we propose algorithms regularizing spectral properties of SS and MFR to improve GNN transferability. We further extend the GDA theory into the more challenging scenario of conditional shift, where spectral regularization still applies. (iii) More importantly, our analyses of the theory reveal which regularization would improve performance of what transfer learning scenario, (iv) with numerical agreement with extensive real-world experiments: SS and MFR regularizations bring more benefits to the scenarios of node transfer and link transfer, respectively. In a nutshell, our study paves the way toward explicitly constructing and training GNNs that can capture more transferable representations across graph domains. Codes are released at https://github.com/Shen-Lab/GDA-SpecReg. 
    more » « less