skip to main content


Search for: All records

Creators/Authors contains: "Dunlop, Mary J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Klumpp, Stefan (Ed.)

    Dense arrangements of binding sites within nucleotide sequences can collectively influence downstream transcription rates or initiate biomolecular interactions. For example, natural promoter regions can harbor many overlapping transcription factor binding sites that influence the rate of transcription initiation. Despite the prevalence of overlapping binding sites in nature, rapid design of nucleotide sequences with many overlapping sites remains a challenge. Here, we show that this is an NP-hard problem, coined here as the nucleotide String Packing Problem (SPP). We then introduce a computational technique that efficiently assembles sets of DNA-protein binding sites into dense, contiguous stretches of double-stranded DNA. For the efficient design of nucleotide sequences spanning hundreds of base pairs, we reduce the SPP to an Orienteering Problem with integer distances, and then leverage modern integer linear programming solvers. Our method optimally packs sets of 20–100 binding sites into dense nucleotide arrays of 50–300 base pairs in 0.05–10 seconds. Unlike approximation algorithms or meta-heuristics, our approach finds provably optimal solutions. We demonstrate how our method can generate large sets of diverse sequences suitable for library generation, where the frequency of binding site usage across the returned sequences can be controlled by modulating the objective function. As an example, we then show how adding additional constraints, like the inclusion of sequence elements with fixed positions, allows for the design of bacterial promoters. The nucleotide string packing approach we present can accelerate the design of sequences with complex DNA-protein interactions. When used in combination with synthesis and high-throughput screening, this design strategy could help interrogate how complex binding site arrangements impact either gene expression or biomolecular mechanisms in varied cellular contexts.

     
    more » « less
    Free, publicly-accessible full text available July 24, 2025
  2. Free, publicly-accessible full text available October 20, 2024
  3. preprint, currently in review 
    more » « less
  4. Coelho, Luis Pedro (Ed.)
    Improvements in microscopy software and hardware have dramatically increased the pace of image acquisition, making analysis a major bottleneck in generating quantitative, single-cell data. Although tools for segmenting and tracking bacteria within time-lapse images exist, most require human input, are specialized to the experimental set up, or lack accuracy. Here, we introduce DeLTA 2.0, a purely Python workflow that can rapidly and accurately analyze images of single cells on two-dimensional surfaces to quantify gene expression and cell growth. The algorithm uses deep convolutional neural networks to extract single-cell information from time-lapse images, requiring no human input after training. DeLTA 2.0 retains all the functionality of the original version, which was optimized for bacteria growing in the mother machine microfluidic device, but extends results to two-dimensional growth environments. Two-dimensional environments represent an important class of data because they are more straightforward to implement experimentally, they offer the potential for studies using co-cultures of cells, and they can be used to quantify spatial effects and multi-generational phenomena. However, segmentation and tracking are significantly more challenging tasks in two-dimensions due to exponential increases in the number of cells. To showcase this new functionality, we analyze mixed populations of antibiotic resistant and susceptible cells, and also track pole age and growth rate across generations. In addition to the two-dimensional capabilities, we also introduce several major improvements to the code that increase accessibility, including the ability to accept many standard microscopy file formats as inputs and the introduction of a Google Colab notebook so users can try the software without installing the code on their local machine. DeLTA 2.0 is rapid, with run times of less than 10 minutes for complete movies with hundreds of cells, and is highly accurate, with error rates around 1%, making it a powerful tool for analyzing time-lapse microscopy data. 
    more » « less
  5. Abstract Transcription factor decoy binding sites are short DNA sequences that can titrate a transcription factor away from its natural binding site, therefore regulating gene expression. In this study, we harness synthetic transcription factor decoy systems to regulate gene expression for metabolic pathways in Escherichia coli. We show that transcription factor decoys can effectively regulate expression of native and heterologous genes. Tunability of the decoy can be engineered via changes in copy number or modifications to the DNA decoy site sequence. Using arginine biosynthesis as a showcase, we observed a 16-fold increase in arginine production when we introduced the decoy system to steer metabolic flux towards increased arginine biosynthesis, with negligible growth differences compared to the wild type strain. The decoy-based production strain retains high genetic integrity; in contrast to a gene knock-out approach where mutations were common, we detected no mutations in the production system using the decoy-based strain. We further show that transcription factor decoys are amenable to multiplexed library screening by demonstrating enhanced tolerance to pinene with a combinatorial decoy library. Our study shows that transcription factor decoy binding sites are a powerful and compact tool for metabolic engineering. 
    more » « less
  6. Abstract

    Understanding metabolic heterogeneity is critical for optimizing microbial production of valuable chemicals, but requires tools that can quantify metabolites at the single‐cell level over time. Here, longitudinal hyperspectral stimulated Raman scattering (SRS) chemical imaging is developed to directly visualize free fatty acids in engineeredEscherichia coliover many cell cycles. Compositional analysis is also developed to estimate the chain length and unsaturation of the fatty acids in living cells. This method reveals substantial heterogeneity in fatty acid production among and within colonies that emerges over the course of many generations. Interestingly, the strains display distinct types of production heterogeneity in an enzyme‐dependent manner. By pairing time‐lapse and SRS imaging, the relationship between growth and production at the single‐cell level are examined. The results demonstrate that cell‐to‐cell production heterogeneity is pervasive and provides a means to link single‐cell and population‐level production.

     
    more » « less